

b)	Zei alle	$ ext{gen} \ e \ h \ e$	Sie ∈ ℝ	e di 2 m	ie f it <i>l</i>	olg $n \ge 1$	enc —	le 1 gi	Ung llt:	glei	chı	ing	vo 1 +	n I - ni	Ber $h \leq$	not	ulli +	: F $h)^n$	ür	alle	e na	atü	rlic	hei	n Z	ahl	en	n	≥ 1	l u	nd			
b)	Sei	h >	 > _	-1 f	est	vo	rge	egel	oen	. V	Vir	vei	rwe	end	\mathbf{en}	Inc	luk	tio	n ü	bei	: n	•												
/	Inc	- luk	- ctic	ons	an	fan	lg:																											
	Inc	1.1	tic	ng	voi	201	-0' 100'	otz		c.						-																		
	TIIC	1 UN		,115	1 1	i at	199,	etz	un	g.					- · ·																			
	Inc	luk	tic	ons	be	hau	up	tur	ıg:																									
	Inc	luk	tic	ons	sch	ırit	tt:	Es	gil	t																								
	(]	1 +	$h)^{\prime}$	n+1	=							>												=	=									
	()		\geq	1 +	- (r	i +	1)/	h.				-	_																			
	_																																	
																																+		
	_																																	
-	_																																	
	_																																	
	_																																	
	_																																	
																																_		
																																_		
																																_		
																																_		
																																_		
-																																_		
-																																		

Aufgabe 4 – Eine generelle Eigenschaft von Graphen

Zeigen Sie, dass jeder Graph G
 mit $n \geq 2$ Knoten zwei Knoten $v \neq w$ enthält, so
dass deg(v) = deg(w).

Hinweis: Für ein gegebenes n, was ist der grösstmögliche Grad den ein Knoten haben kann?

According to Pigeonhole Principle there are at least 2 vertices a, b with deg(a) = deg(b)

Aufgabe 5 – Algorithmus

Beschreiben Sie einen Algorithmus der das folgende Problem löst: Gegeben ist die Eingabe bestehend aus einen Graphen G = (V, E) mit n Knoten (gehen Sie davon aus, dass der Graph als Adjazenzliste gegeben ist). Ihr Algorithmus soll "Ja" ausgeben, falls G ein Baum ist und "Nein" andernfalls.

Wie immer wenn Sie einen Algorithmus beschreiben gehöhrt zu einer vollständigen Lösung: eine klare Beschreibung des Algorithmus, ein Korrektheitsbeweis und eine Laufzeitanalyse.

Hinweis: Für diese Aufgabe dürfen Sie das Statement aus Aufgabe 6 ohne Beweis verwenden.

Given: G(V,E) with n vertices Return: Yes if G is a tree, otherwise no Tree Properties: G(V,E), $|V| \ge 1$ G is a tree Gis connected and has no cycle Gis connected and IEI=IVI-I G has no cycle and IEI=IVI-I For all xiye V: G has only one x-y path Algorithm Idea: Count IEl if $(|E| \neq |V| - 1)$ return "No" DFS return if (we visit a vertex that is already visited) "No" return "Yes"

Aufgabe 6 – Charakterisierung von Bäumen (Challenge-Aufgabe)

Zeigen Sie: Ist G = (V, E) ein Graph auf $|V| \ge 1$ Knoten, so sind die folgenden Aussagen äquivalent:

- (a) G ist zusammenhängend und kreisfrei (d.h. G ist ein Baum).
- (b) G ist zusammenhängend und |E| = |V| 1.
- (c) G ist kreisfrei und |E| = |V| 1.
- (d) Für alle $x, y \in V$ gilt: G enthält genau einen x-y-Pfad.

Satz 1.6 im Skript