A&W Exercise Session 5 Coloring

Connectivity

- Articulation Points & Menger's Theorem 4 Bridges
- 4 Block Decomposition

Cycles

Le Eulerian Cycle Lo Hamiltonian Cycle G TSP

Matchings

Le Definition Le Hall's Theorem Shallgorithms

Colorings

Le Definition 🔶 Algorithm

& Brooks's Theorem

Vahrscheinlichkeit

- 4 Grundbegriffe und Notationen
- 4 Bedingte Wahrscheinlichkeiten
- 6 Unabhängigkeiten
- 🗣 Zufallsvariablen
- 4 Wichtige Diskrete Verteilungen
- 🕒 Abschätzen von Wahrscheinlichkeiten

A&W Overview

- T1 Discussion
- Matching Kahoot

Coloring

Minitest 2 - coloring discussion

Outline

Feedback + Discussion

- 1.c : Reflexivity argument accepted
- Watch out for the comments !

Keep up the good work !

• Questions, issues ... Let me know !

Some Announcments

- Anki card approach changed (instead we have kahoots for now)
 - Matching kahoot this week
 - Cycles + TSP kahoot next week ...

- T2 (peer grading 1) ??
- Namings:
 - T1(theoretical exercise 1) , T2(peer grading 1), T3(theoretical exercise 2) ...

Matching Kahoot

Coloring Intuition

Coloring Intuition

Matching

pairing adjacent vertices without conflicts

(pairing non-adjacent edges)

ensure that selected edges don't touch the same vertex

edges are our friends

Coloring

seperating adjacent vertices

ensure that the connected vertices have distinct colors

edges are our enemies

Coloring Intuition

Matching

pairing adjacent vertices without conflicts (pairing non-adjacent edges)

ensure that selected edges don't touch the same vertex

edges are our friends

k-matched G is also (k-1)-matched

simply remove 1 edge

Coloring

seperating adjacent vertices

ensure that the connected vertices have distinct colors

edges are our enemies

(k-1)-colored G is also k-colored

simply change one node's color

Coloring Definitions

- (Vertex-) Coloring :
 - A (vertex-) coloring of G = (V, E) with k colors is a mapping $c: V \to [k]$ s.t. $c(u) \neq c(v)$ for all edges $\{u, v\} \in E$

- (Vertex-) Coloring :
 - A (vertex-) coloring of G = (V, E) with k colors is a mapping $c: V \to [k]$ s.t. $c(u) \neq c(v)$ for all edges $\{u, v\} \in E$

Is this a coloring?

- (Vertex-) Coloring :
 - A (vertex-) coloring of G = (V, E) with k colors is a mapping $c: V \to [k]$ s.t. $c(u) \neq c(v)$ for all edges $\{u, v\} \in E$

Is this a coloring?

- (Vertex-) Coloring :
 - A (vertex-) coloring of G = (V, E) with k colors is a mapping $c: V \to [k]$ s.t. $c(u) \neq c(v)$ for all edges $\{u, v\} \in E$

Is this a coloring?

- (Vertex-) Coloring :
 - A (vertex-) coloring of G = (V, E) with k colors is a mapping $c: V \rightarrow [k]$ s.t. $c(u) \neq c(v)$ for all edges $\{u, v\} \in E$

Is this a coloring?

Coloring Definitions

- (Vertex-) Coloring :
 - A (vertex-) coloring of G = (V, E) with k colors is a mapping $c: V \to [k]$ s.t. $c(u) \neq c(v)$ for all edges $\{u, v\} \in E$
- Chromatic Number :
 - to color a graph
 - equivalent : $\chi(G) \leq k \iff G$ is k-partite

Color vertices in a way that no two vertices that share an edge are of the same color

• The chromatic number $\chi(G)$ is the minimum number of colors needed

Coloring k-partite

General version of the bipartite

- A graph G = (V, E) is called k-partite if
 - the vertex set V can be divided into k disjoint sets $V = V_1 \cup V_2 \cup \ldots \cup V_k$
 - s.t. for every edge $(u, v) \in E$, u and v belong to different sets V; and V where $l \neq l$

- Chromatic Number :
 - The chromatic number $\chi(G)$ is the minimum number of colors needed to color a graph
 - equivalent : $\chi(G) \leq k \iff G$ is k-partite

• (Vertex-) Coloring :

Color vertices in a way that no two vertices that share an edge are of the same color

- Chromatic Number :
 - The chromatic number $\chi(G)$ is the minimum number of colors needed to color a graph
 - equivalent : $\chi(G) \leq k \iff G$ is k-partite

 $\chi(G_1) = 3$

• (Vertex-) Coloring :

Color vertices in a way that no two vertices that share an edge are of the same color

- Chromatic Number :
 - The chromatic number $\chi(G)$ is the minimum number of colors needed to color a graph
 - equivalent : $\chi(G) \leq k \iff G$ is k-partite

 $\chi(G_1) = 3$

• (Vertex-) Coloring :

Color vertices in a way that no two vertices that share an edge are of the same color

- Chromatic Number :
 - The chromatic number $\chi(G)$ is the minimum number of colors needed to color a graph
 - equivalent : $\chi(G) \leq k \iff G$ is k-partite

 $\chi(G_1) = 3$

• (Vertex-) Coloring :

Color vertices in a way that no two vertices that share an edge are of the same color

- Chromatic Number :
 - The chromatic number $\chi(G)$ is the minimum number of colors needed to color a graph
 - equivalent : $\chi(G) \leq k \iff G$ is k-partite

 $\chi(G_1) = 3$

• (Vertex-) Coloring :

Color vertices in a way that no two vertices that share an edge are of the same color

- Chromatic Number :
 - The chromatic number $\chi(G)$ is the minimum number of colors needed to color a graph
 - equivalent : $\chi(G) \leq k \iff G$ is k-partite

 $\chi(G_1) = 3$

• (Vertex-) Coloring :

Color vertices in a way that no two vertices that share an edge are of the same color

$$\chi(G_1) = 3$$

- Chromatic Number :
 - The chromatic number $\chi(G)$ is the minimum number of colors needed to color a graph
 - equivalent : $\chi(G) \leq k \iff G$ is k-partite

 $\chi(G_1) = 3$

• (Vertex-) Coloring :

Color vertices in a way that no two vertices that share an edge are of the same color

$$\chi(G_1) = 3$$

- Chromatic Number :
 - The chromatic number $\chi(G)$ is the minimum number of colors needed to color a graph
 - equivalent : $\chi(G) \leq k \iff G$ is k-partite

 $\chi(G_1) = 3$

• (Vertex-) Coloring :

Color vertices in a way that no two vertices that share an edge are of the same color

- Chromatic Number :
 - The chromatic number $\chi(G)$ is the minimum number of colors needed to color a graph
 - equivalent : $\chi(G) \leq k \iff G$ is k-partite

 $\chi(G_1) = 3$

• (Vertex-) Coloring :

Color vertices in a way that no two vertices that share an edge are of the same color

Coloring Problem

For all $k \ge 3$, given a graph G = (V, E), is $\chi(G) \leq k$?

NP - Complete

NP-Complete For all $k \ge 3$, given a graph G = (V, E), is $\chi(G) \le k$?

Complexity Theory TI next semester

NP - Complete

A problem a in NP is NP-complete if :

 $a \in P \implies P = NP$

P : polynomial

NP : non-deterministic polynomial

- NP is the set of decision problems *solvable* in polynomial time by a nondeterministic Turing machine.
- NP is the set of decision problems *verifiable* in polynomial time by a deterministic Turing machine.

Let's take a break

- Pick an arbitrary order of the vertices : $V = \{v_1, \ldots, v_n\}$
- $c[v_1] \leftarrow 1$

- for i = 2 to n do

min color k s.t. it's not equal to the color of the neighbors of v_i that are already colored

color the first vertex with color 1

• $c[v_i] \leftarrow \min\{k \in \mathbb{N} \mid k \neq c[u] \text{ for all } u \in N(v_i) \cap \{v_1, \dots, v_{i-1}\}\}$

k indexing for colors :

i	1	2	3	4	5	6	7	8
c[v _i]								

- Pick an arbitrary order of the vertices : $V = \{v_1, \ldots, v_n\}$
- $c[v_1] \leftarrow 1$ color the first vertex with color 1
- for i = 2 to n do
 - $c[v_i] \leftarrow \min\{k \in \mathbb{N} \mid k \neq c[u] \text{ for all } u \in N(v_i) \cap \{v_1, ..., v_{i-1}\}\}$

k indexing for colors :

C:

- Pick an arbitrary order of the vertices : $V = \{v_1, \ldots, v_n\}$
- $c[v_1] \leftarrow 1$ color the first vertex with color 1
- for i = 2 to n do
 - $c[v_i] \leftarrow \min\{k \in \mathbb{N} \mid k \neq c[u] \text{ for all } u \in N(v_i) \cap \{v_1, ..., v_{i-1}\}\}$

k indexing for colors :

- Pick an arbitrary order of the vertices : $V = \{v_1, \ldots, v_n\}$
- $c[v_1] \leftarrow 1$ color the first vertex with color 1
- for i = 2 to n do
 - $c[v_i] \leftarrow \min\{k \in \mathbb{N} \mid k \neq c[u] \text{ for all } u \in N(v_i) \cap \{v_1, ..., v_{i-1}\}\}$

k indexing for colors :

- Pick an arbitrary order of the vertices : $V = \{v_1, \ldots, v_n\}$
- $c[v_1] \leftarrow 1$ color the first vertex with color 1
- for i = 2 to n do
 - $c[v_i] \leftarrow \min\{k \in \mathbb{N} \mid k \neq c[u] \text{ for all } u \in N(v_i) \cap \{v_1, ..., v_{i-1}\}\}$

min color k s.t. it's not equal to the color of the neighbors of v_i that are already colored

k indexing for colors :

- Pick an arbitrary order of the vertices : $V = \{v_1, \ldots, v_n\}$
- $c[v_1] \leftarrow 1$ color the first vertex with color 1
- for i = 2 to n do
 - $c[v_i] \leftarrow \min\{k \in \mathbb{N} \mid k \neq c[u] \text{ for all } u \in N(v_i) \cap \{v_1, ..., v_{i-1}\}\}$

min color k s.t. it's not equal to the color of the neighbors of v_i that are already colored

k indexing for colors :

i	1	2	3	4	5	6	7	8
c[v _i]	1	1						

- Pick an arbitrary order of the vertices : $V = \{v_1, \ldots, v_n\}$
- $c[v_1] \leftarrow 1$ color the first vertex with color 1
- for i = 2 to n do
 - $c[v_i] \leftarrow \min\{k \in \mathbb{N} \mid k \neq c[u] \text{ for all } u \in N(v_i) \cap \{v_1, ..., v_{i-1}\}\}$

min color k s.t. it's not equal to the color of the neighbors of v_i that are already colored

k indexing for colors :

i	1	2	3	4	5	6	7	8
c[v _i]	1	1	2					

- Pick an arbitrary order of the vertices : $V = \{v_1, \ldots, v_n\}$
- $c[v_1] \leftarrow 1$ color the first vertex with color 1
- for i = 2 to n do
 - $c[v_i] \leftarrow \min\{k \in \mathbb{N} \mid k \neq c[u] \text{ for all } u \in N(v_i) \cap \{v_1, ..., v_{i-1}\}\}$

min color k s.t. it's not equal to the color of the neighbors of v_i that are already colored

k indexing for colors :

i	1	2	3	4	5	6	7	8
c[v _i]	1	1	2					

- Pick an arbitrary order of the vertices : $V = \{v_1, \ldots, v_n\}$
- $c[v_1] \leftarrow 1$ color the first vertex with color 1
- for i = 2 to n do
 - $c[v_i] \leftarrow \min\{k \in \mathbb{N} \mid k \neq c[u] \text{ for all } u \in N(v_i) \cap \{v_1, ..., v_{i-1}\}\}$

min color k s.t. it's not equal to the color of the neighbors of v_i that are already colored

k indexing for colors :

i	1	2	3	4	5	6	7	8
c[v _i]	1	1	2	2				

- Pick an arbitrary order of the vertices : $V = \{v_1, \ldots, v_n\}$
- $c[v_1] \leftarrow 1$ color the first vertex with color 1
- for i = 2 to n do
 - $c[v_i] \leftarrow \min\{k \in \mathbb{N} \mid k \neq c[u] \text{ for all } u \in N(v_i) \cap \{v_1, ..., v_{i-1}\}\}$

min color k s.t. it's not equal to the color of the neighbors of v_i that are already colored

k indexing for colors :

i	1	2	3	4	5	6	7	8
c[v _i]	1	1	2	2				

- Pick an arbitrary order of the vertices : $V = \{v_1, \ldots, v_n\}$
- $c[v_1] \leftarrow 1$ color the first vertex with color 1
- for i = 2 to n do
 - $c[v_i] \leftarrow \min\{k \in \mathbb{N} \mid k \neq c[u] \text{ for all } u \in N(v_i) \cap \{v_1, ..., v_{i-1}\}\}$

min color k s.t. it's not equal to the color of the neighbors of v_i that are already colored

k indexing for colors :

i	1	2	3	4	5	6	7	8
c[v _i]	1	1	2	2	2			

- Pick an arbitrary order of the vertices : $V = \{v_1, \ldots, v_n\}$
- $c[v_1] \leftarrow 1$ color the first vertex with color 1
- for i = 2 to n do
 - $c[v_i] \leftarrow \min\{k \in \mathbb{N} \mid k \neq c[u] \text{ for all } u \in N(v_i) \cap \{v_1, ..., v_{i-1}\}\}$

min color k s.t. it's not equal to the color of the neighbors of v_i that are already colored

k indexing for colors :

i	1	2	3	4	5	6	7	8
c[v _i]	1	1	2	2	2			

- Pick an arbitrary order of the vertices : $V = \{v_1, \ldots, v_n\}$
- $c[v_1] \leftarrow 1$ color the first vertex with color 1
- for i = 2 to n do
 - $c[v_i] \leftarrow \min\{k \in \mathbb{N} \mid k \neq c[u] \text{ for all } u \in N(v_i) \cap \{v_1, ..., v_{i-1}\}\}$

min color k s.t. it's not equal to the color of the neighbors of v_i that are already colored

k indexing for colors :

İ	1	2	3	4	5	6	7	8
c[v _i]	1	1	2	2	2	3		

- Pick an arbitrary order of the vertices : $V = \{v_1, \ldots, v_n\}$
- $c[v_1] \leftarrow 1$ color the first vertex with color 1
- for i = 2 to n do
 - $c[v_i] \leftarrow \min\{k \in \mathbb{N} \mid k \neq c[u] \text{ for all } u \in N(v_i) \cap \{v_1, ..., v_{i-1}\}\}$

min color k s.t. it's not equal to the color of the neighbors of v_i that are already colored

k indexing for colors :

İ	1	2	3	4	5	6	7	8
c[v _i]	1	1	2	2	2	3		

- Pick an arbitrary order of the vertices : $V = \{v_1, \ldots, v_n\}$
- $c[v_1] \leftarrow 1$ color the first vertex with color 1
- for i = 2 to n do
 - $c[v_i] \leftarrow \min\{k \in \mathbb{N} \mid k \neq c[u] \text{ for all } u \in N(v_i) \cap \{v_1, ..., v_{i-1}\}\}$

min color k s.t. it's not equal to the color of the neighbors of v_i that are already colored

k indexing for colors :

i	1	2	3	4	5	6	7	8
c[v _i]	1	1	2	2	2	3	1	

- Pick an arbitrary order of the vertices : $V = \{v_1, \ldots, v_n\}$
- $c[v_1] \leftarrow 1$ color the first vertex with color 1
- for i = 2 to n do
 - $c[v_i] \leftarrow \min\{k \in \mathbb{N} \mid k \neq c[u] \text{ for all } u \in N(v_i) \cap \{v_1, ..., v_{i-1}\}\}$

min color k s.t. it's not equal to the color of the neighbors of v_i that are already colored

k indexing for colors :

С

	i	1	2	3	4	5	6	7	8
•	c[v _i]	1	1	2	2	2	3	1	

- Pick an arbitrary order of the vertices : $V = \{v_1, \ldots, v_n\}$
- $c[v_1] \leftarrow 1$ color the first vertex with color 1
- for i = 2 to n do

considering ks

• $c[v_i] \leftarrow \min\{k \in \mathbb{N} \mid k \neq c[u] \text{ for all } u \in N(v_i) \cap \{v_1, ..., v_{i-1}\}\}$

min color k s.t. it's not equal to the color of the neighbors of v_i that are already colored

8

k indexing for colors :

С

	i	1	2	3	4	5	6	7	8	dor
•	c[v _i]	1	1	2	2	2	3	1	4	

- Pick an arbitrary order of the vertices : $V = \{v_1, \ldots, v_n\}$
- $c[v_1] \leftarrow 1$ color the first vertex with color 1
- for i = 2 to n do
 - $c[v_i] \leftarrow \min\{k \in \mathbb{N} \mid k \neq c[u] \text{ for all } u \in N(v_i) \cap \{v_1, ..., v_{i-1}\}\}$

min color k s.t. it's not equal to the color of the neighbors of v_i that are already colored

- For all orders of vertices $V = \{v_1, \ldots, v_n\}$
 - the Greedy Algorithm needs $\Delta(G)$ +1 colors
- There exists an order of vertices $V = \{v_1, \ldots, v_n\}$ for which • the Greedy Algorithm needs $\chi(G)$ colors

- Pick an arbitrary order of the vertices : $V = \{v_1, \ldots, v_n\}$
- $c[v_1] \leftarrow 1$ color the first vertex with color 1
- for i = 2 to n do
- $c[v_i] \leftarrow \min\{k \in \mathbb{N} \mid k \neq c[u] \text{ for all } u \in N(v_i) \cap \{v_1, ..., v_{i-1}\}\}$

min color k s.t. it's not equal to the color of the neighbors of v_i that are already colored

$\Delta(G) :=$ maximum degree in G

- For all orders of vertices $V = \{v_1, \ldots, v_n\}$
 - the Greedy Algorithm needs $\Delta(G)$ +1 colors
- There exists an order of vertices $V = \{v_1, \ldots, v_n\}$ for which • the Greedy Algorithm needs $\chi(G)$ colors $\chi(G) \leq k \iff G$ is k-partite

- Pick an arbitrary order of the vertices : $V = \{v_1, \ldots, v_n\}$
- $c[v_1] \leftarrow 1$ color the first vertex with color 1
- for i = 2 to n do
- $c[v_i] \leftarrow \min\{k \in \mathbb{N} \mid k \neq c[u] \text{ for all } u \in N(v_i) \cap \{v_1, ..., v_{i-1}\}\}$

min color k s.t. it's not equal to the color of the neighbors of v_i that are already colored

 $\Delta(G) :=$ maximum degree in G

- For all orders of vertices $V = \{v_1, \ldots, v_n\}$
 - the Greedy Algorithm needs $\Delta(G)$ +1 colors
- There exists an order of vertices $V = \{v_1, \ldots, v_n\}$ for which • the Greedy Algorithm needs $\chi(G)$ colors $\chi(G) \leq k \iff G$ is k-partite

- Pick an arbitrary order of the vertices : $V = \{v_1, \ldots, v_n\}$
- $c[v_1] \leftarrow 1$ color the first vertex with color 1
- for i = 2 to n do
- $c[v_i] \leftarrow \min\{k \in \mathbb{N} \mid k \neq c[u] \text{ for all } u \in N(v_i) \cap \{v_1, ..., v_{i-1}\}\}$

min color k s.t. it's not equal to the color of the neighbors of v_i that are already colored

 $\Delta(G) := \text{maximum degree in } G$

- For all orders of vertices $V = \{v_1, \ldots, v_n\}$
 - the Greedy Algorithm needs $\Delta(G)$ +1 colors
- There exists an order of vertices $V = \{v_1, \ldots, v_n\}$ for which • the Greedy Algorithm needs $\chi(G)$ colors $\chi(G) \leq k \iff G$ is k-partite

- Pick an arbitrary order of the vertices : $V = \{v_1, \ldots, v_n\}$
- $c[v_1] \leftarrow 1$ color the first vertex with color 1
- for i = 2 to n do
- $c[v_i] \leftarrow \min\{k \in \mathbb{N} \mid k \neq c[u] \text{ for all } u \in N(v_i) \cap \{v_1, ..., v_{i-1}\}\}$

min color k s.t. it's not equal to the color of the neighbors of v_i that are already colored

 $\Delta(G) := \text{maximum degree in } G$

- For all orders of vertices $V = \{v_1, \ldots, v_n\}$
 - the Greedy Algorithm needs $\Delta(G)$ +1 colors
- There exists an order of vertices $V = \{v_1, \ldots, v_n\}$ for which • the Greedy Algorithm needs $\chi(G)$ colors $\chi(G) \leq k \iff G$ is k-partite

- Pick an arbitrary order of the vertices : $V = \{v_1, \ldots, v_n\}$
- $c[v_1] \leftarrow 1$ color the first vertex with color 1
- for i = 2 to n do
- $c[v_i] \leftarrow \min\{k \in \mathbb{N} \mid k \neq c[u] \text{ for all } u \in N(v_i) \cap \{v_1, ..., v_{i-1}\}\}$

min color k s.t. it's not equal to the color of the neighbors of v_i that are already colored

 $\Delta(G) := \text{maximum degree in } G$

- For all orders of vertices $V = \{v_1, \ldots, v_n\}$
 - the Greedy Algorithm needs $\Delta(G)$ +1 colors
- There exists an order of vertices $V = \{v_1, \ldots, v_n\}$ for which • the Greedy Algorithm needs $\chi(G)$ colors $\chi(G) \leq k \iff G$ is k-partite

- Pick an arbitrary order of the vertices : $V = \{v_1, \ldots, v_n\}$
- $c[v_1] \leftarrow 1$ color the first vertex with color 1
- for i = 2 to n do
- $c[v_i] \leftarrow \min\{k \in \mathbb{N} \mid k \neq c[u] \text{ for all } u \in N(v_i) \cap \{v_1, ..., v_{i-1}\}\}$

- For all orders of vertices $V = \{v_1, \ldots, v_n\}$
 - the Greedy Algorithm needs $\Delta(G)$ +1 colors
- There exists an order of vertices $V = \{v_1, \ldots, v_n\}$ for which • the Greedy Algorithm needs $\chi(G)$ colors
- There exists bipartite Graphs and order of vertices $V = \{v_1, \ldots, v_n\}$ for which
 - the Greedy Algorithm needs |V| / 2 colors

- Pick an arbitrary order of the vertices : $V = \{v_1, \ldots, v_n\}$
- $c[v_1] \leftarrow 1$ color the first vertex with color 1
- for i = 2 to n do
- $c[v_i] \leftarrow \min\{k \in \mathbb{N} \mid k \neq c[u] \text{ for all } u \in N(v_i) \cap \{v_1, ..., v_{i-1}\}\}$

- For the chosen order of vertices $V = \{v_1, \ldots, v_n\}$ s.t.
 - $|N(v_i) \cap \{v_1, \dots, v_{i-1}\}\}| \le k \quad \forall 2 \le i \le n$
 - the Greedy Algorithm needs at most k +1 colors

- $c[v_1] \leftarrow 1$ color the first vertex with color 1
- for i = 2 to n do

• Pick an arbitrary order of the vertices : $V = \{v_1, \ldots, v_n\}$

k gets increased here $\longrightarrow c[v_i] \leftarrow \min\{k \in \mathbb{N} \mid k \neq c[u] \text{ for all } u \in N(v_i) \cap \{v_1, \dots, v_{i-1}\}\}$

Heuristic Meaning

Heuristic in Algorithms:

- Uses a **practical approach** to find a solution quickly. ullet
- Sacrifices accuracy or completeness for speed. \bullet
- Aims for a **good enough** solution rather than the **perfect** one. ullet
- Often relies on experience, intuition, or patterns rather than formal ulletmathematical proofs.

A heuristic in algorithms refers to a problem-solving technique that:

Coloring Heuristic + Greedy Algorithm

- Pick the order of the vertices using the heuristic : $V = \{v_1, \ldots, v_n\}$
- $c[v_1] \leftarrow 1$ color the first vertex with color 1
- for i = 2 to n do
 - $c[v_i] \leftarrow \min\{k \in \mathbb{N} \mid k \neq c[u] \text{ for all } u \in N(v_i) \cap \{v_1, ..., v_{i-1}\}\}$
- Heuristic :
 - $v_n :=$ Vertex with the smallest degree. Delete v_n

 - Iterate

- For the chosen order of vertices $V = \{v_1, \ldots, v_n\}$ s.t.
 - $|N(v_i) \cap \{v_1, ..., v_{i-1}\}\}| \le k \quad \forall 2 \le i \le n$
 - the Greedy Algorithm needs at most k +1 colors

min color k s.t. it's not equal to the color of the neighbors of v_i that are already colored

• $v_{n-1} :=$ Vertex with the smallest degree in the remaining G. Delete v_{n-1}

Coloring Heuristic + Greedy Algorithm - Observations

- If in every subgraph of G, there exists a vertex with degree $\leq k$
 - heuristic provides an order $v_1, \ldots v_n$ s.t. the Greedy Algorithm needs k+1 colors
- For trees heuristic+greedy finds a coloring with 2 colors
- For planar graphs heuristic+greedy finds a coloring with ≤ 6 colors
- If G is connected and there exists $v \in G$ with deg(v) < $\Delta(G)$ heuristic (or bfs/dfs)+ greedy finds a coloring with $\leq \Delta(G)$ colors
- If the G is 3-colorable, then one can color it in O(|V| + |E|) time with O($\sqrt{|V|}$) colors

it doesn't hold only when the graph is regular: $\forall v \in V$ (deg(v) = $\Delta(G)$

Articulation Points and Bridges Definition

The equivalence classes are named as Blocks

• Let G = (V, E) be a graph.

 $e \sim$

The equivalence relation \sim on *E* is defined as :

$$f := \begin{cases} e = f & \text{or} \\ e & \text{and} f \text{ are on a commo} \end{cases}$$

Lemma :

2 blocks always intersect at an articulation point.

Articulation point is the critical point that holds blocks together. If a graph has an articulation point, it serves as the **only connection** between two or more blocks.

- For all Block-Graphs, if every block can be colored with k colors
 - G can be colored with k colors

- For all Block-Graphs, if every block can be colored with k colors
 - G can be colored with k colors

- For all Block-Graphs, if every block can be colored with k colors
 - G can be colored with k colors

?

- For all Block-Graphs, if every block can be colored with k colors
 - G can be colored with k colors

- For all Block-Graphs, if every block can be colored with k colors
 - G can be colored with k colors

Coloring **Brook's Theorem**

- All Graphs
 - can be colored in O(|E|) time with $\Delta(G)$ + 1 colors

- **Brook's Theorem**
- $G \neq K_n$, $G \neq C_{2n+1}$, G connected
 - can be colored in O(|E|) time with $\Delta(G)$ colors

- Pick an arbitrary order of the vertices : $V = \{v_1, \ldots, v_n\}$
- $c[v_1] \leftarrow 1$ color the first vertex with color 1
- for i = 2 to n do
 - $c[v_i] \leftarrow \min\{k \in \mathbb{N} \mid k \neq c[u] \text{ for all } u \in N(v_i) \cap \{v_1, \dots, v_{i-1}\}\}$

Minitest 2 - rest

Questions Feedbacks, Recommendations

