

A&W **Exercise Session 4** Matching, TSP II

Connectivity

La Articulation Points La Menger's Theorem 4 Bridges 4 Block - Decomposition

Cycles

Le Closed Eulerian Walk Le TSP Le Hamiltonian Cycle

Matchings

Le Definition Le Holl's Theorem 🗣 Algorithms

Colorings

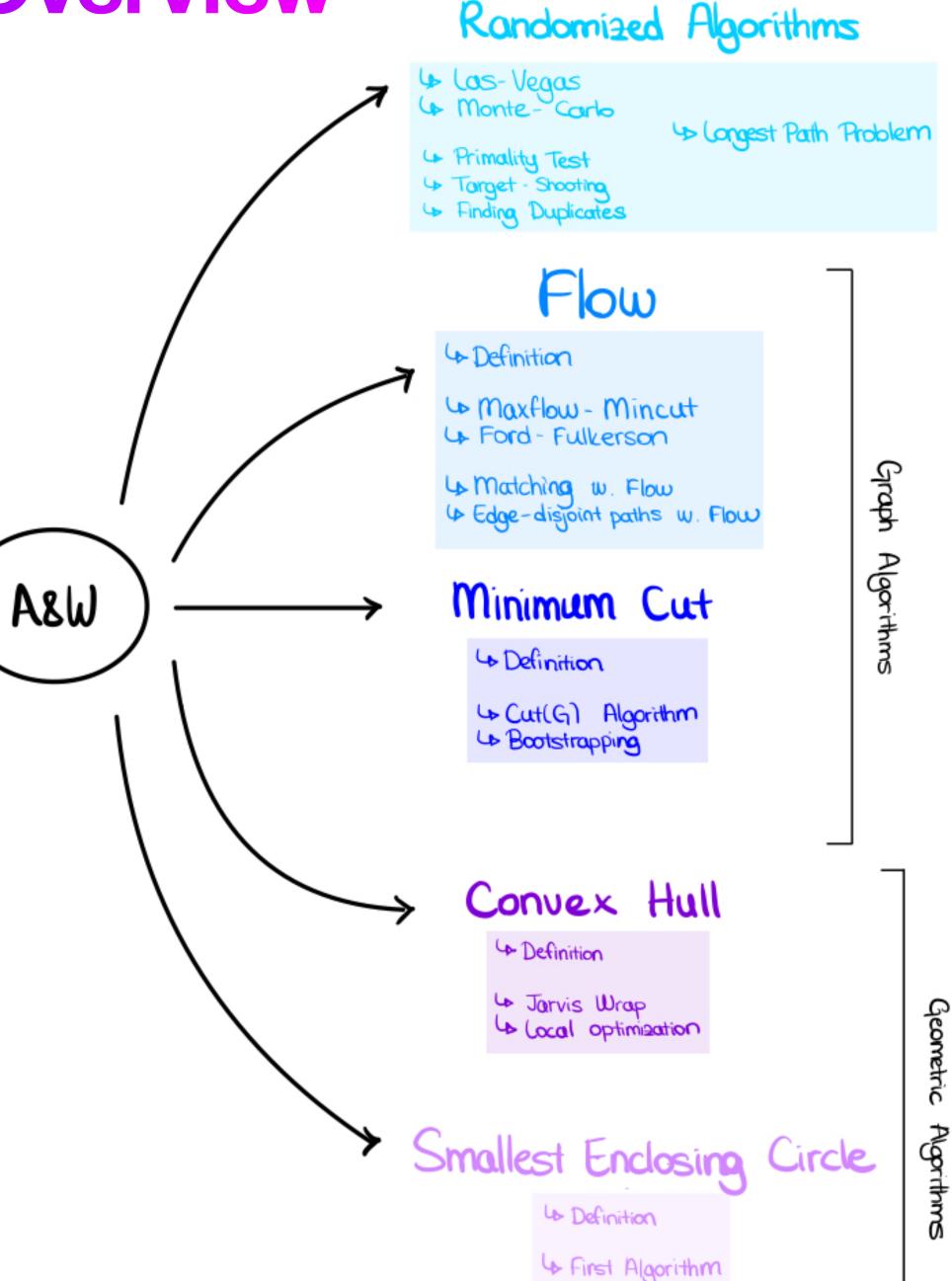
🔶 Algorithm

4 Definition 4 Brooks's Theorem

Wahrscheinlichkeit

- 4 Grundbegriffe und Notationen
- 4 Bedingte Mahrscheinlichkeiten
- (+ Unabhängigkeiten
- 🗣 Zufallsvariablen
- 4 Dichtige Diskrete Verteilungen
- 🖙 Albschätzen von Wahrscheinlichkeiten

A&W Overview



& Final Algorithm

- Minitest II
- Minitest II Discussion

- Matching
- TSP II

Outline

Minitest II

Matching

- Matching :

no two edges share common vertices

• A subset of edges $M \subseteq E$ in a Graph G = (V, E) is called a Matching, if no vertex in the graph is incident to more than one edge from M

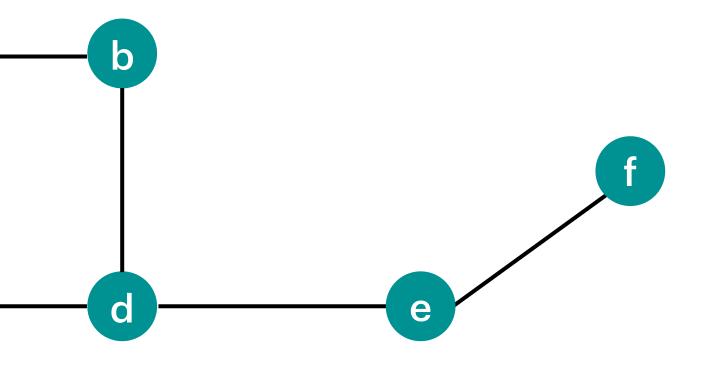
- Matching :

no two edges share common vertices

a

Is this a matching?

• A subset of edges $M \subseteq E$ in a Graph G = (V, E) is called a Matching, if no vertex in the graph is incident to more than one edge from M



- Matching :

no two edges share common vertices

b

a

Is this a matching?

• A subset of edges $M \subseteq E$ in a Graph G = (V, E) is called a Matching, if no vertex in the graph is incident to more than one edge from M

$M_1 = \{\{a,c\}, \{e,f\}\}$

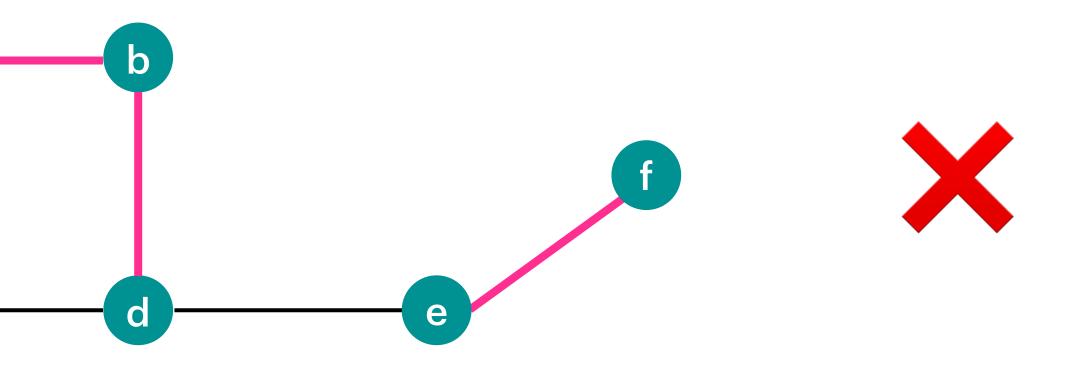
- Matching :

no two edges share common vertices

a

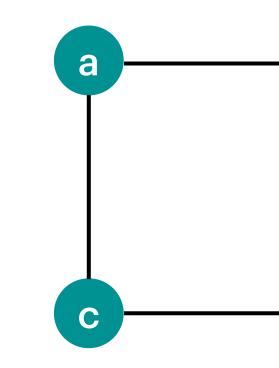
Is this a matching?

• A subset of edges $M \subseteq E$ in a Graph G = (V, E) is called a Matching, if no vertex in the graph is incident to more than one edge from M



- Matching :

no two edges share common vertices



• A subset of edges $M \subseteq E$ in a Graph G = (V, E) is called a Matching, if no vertex in the graph is incident to more than one edge from M



- Matching :

no two edges share common vertices

- covered (matched):
 - an edge $e \in M$ that contains v

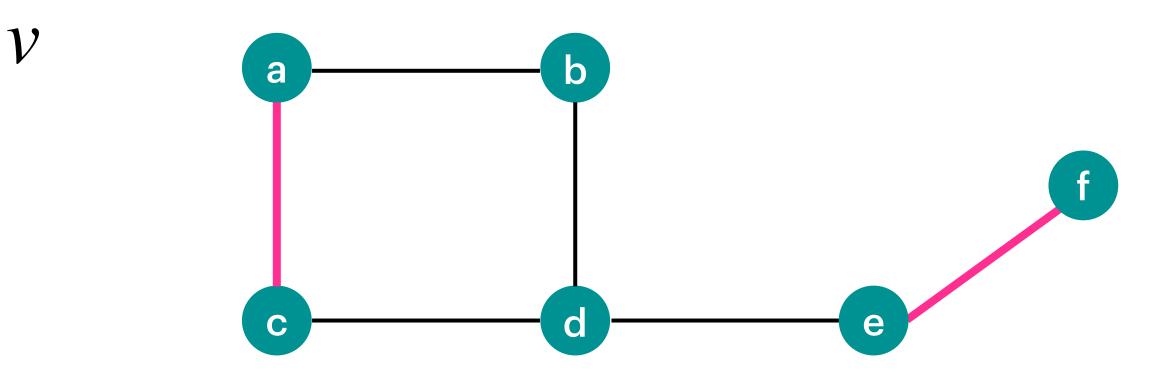
• A subset of edges $M \subseteq E$ in a Graph G = (V, E) is called a Matching, if no vertex in the graph is incident to more than one edge from M

• A vertex $v \subseteq V$ in a Graph G = (V, E) is covered by M, if there exists

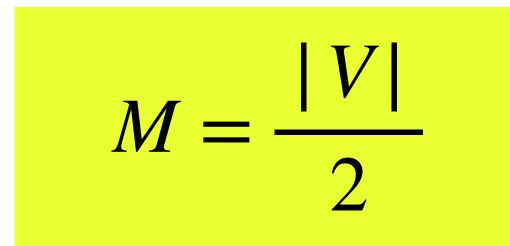
- no two edges share common vertices • Matching :
- covered (matched):
 - an edge $e \in M$ that contains v

• A subset of edges $M \subseteq E$ in a Graph G = (V, E) is called a Matching, if no vertex in the graph is incident to more than one edge from M

• A vertex $v \subseteq V$ in a Graph G = (V, E) is covered by M, if there exists



- covered :
 - A vertex $\nu \subseteq V$ in a Graph G = (V, E) is covered by M, if there exists an edge $e \in M$ that contains v
- Matching : no two edges share common vertices
 - A subset of edges $M \subseteq E$ in a Graph G = (V, E) is called a Matching, if no vertex in the graph is incident to more than one edge from M
- Perfect Matching :
 - by exactly one edge from M
 - equivalently, if



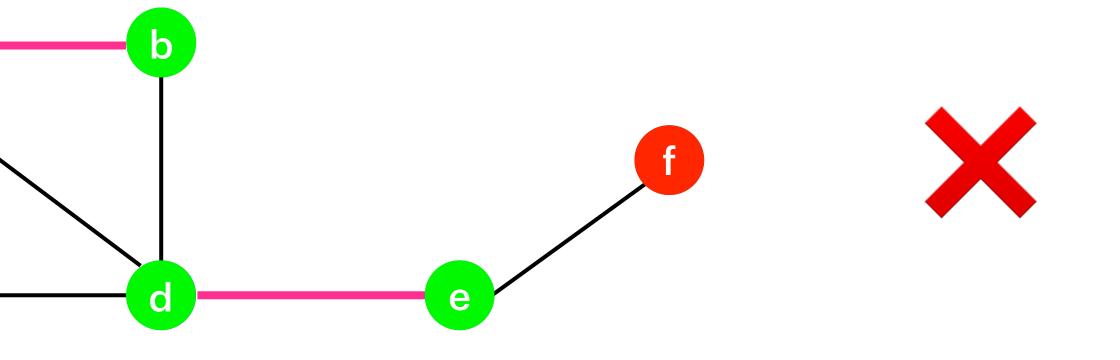
• covered :

a

Matching Definitions

- A vertex $\mathbf{v} \subseteq V$ in a Graph G = (V, E) is covered by M, if there exists an edge $e \in M$ that contains v
- Matching : no two edges share common vertices
 - A subset of edges $M \subseteq E$ in a Graph G = (V, E) is called a Matching, if no vertex in the graph is incident to more than one edge from M
- Perfect Matching : $M = \frac{|V|}{2}$
 - by exactly one edge from M

Is this a perfect matching?



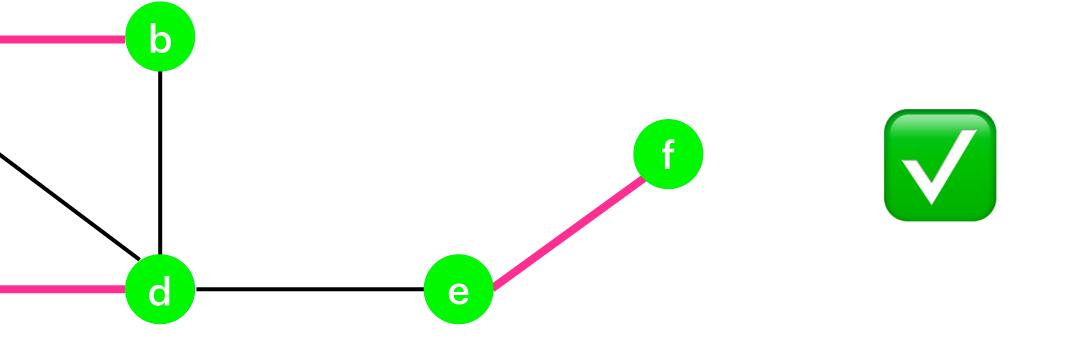
• covered :

a

Matching Definitions

- A vertex $\mathbf{v} \subseteq V$ in a Graph G = (V, E) is covered by M, if there exists an edge $e \in M$ that contains v
- Matching : no two edges share common vertices
 - A subset of edges $M \subseteq E$ in a Graph G = (V, E) is called a Matching, if no vertex in the graph is incident to more than one edge from M
- Perfect Matching : $M = \frac{|V|}{2}$
 - by exactly one edge from M

Is this a perfect matching?

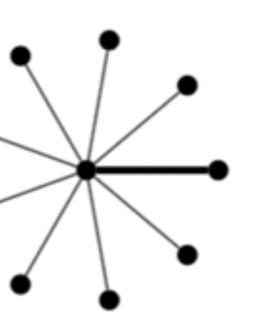


• covered :

Matching Definitions

- A vertex $\mathbf{v} \subseteq V$ in a Graph G = (V, E) is covered by M, if there exists an edge $e \in M$ that contains v
- Matching : no two edges share common vertices
 - A subset of edges $M \subseteq E$ in a Graph G = (V, E) is called a Matching, if no vertex in the graph is incident to more than one edge from M
- Perfect Matching : $M = \frac{|V|}{2}$
 - by exactly one edge from M

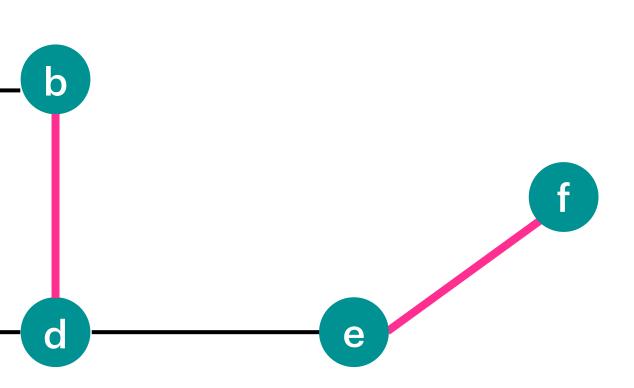
Is this a perfect matching?



- inclusion-maximal : "no edge can be added to this matching"
 - A matching $M \subseteq E$ is inclusion-maximal, if there is no other matching M's.t. $M \subseteq M'$ (strict inclusion) and |M'| > |M|
- (cardinality-) maximum : "one can't find a bigger matching"
 - A matching $M \subseteq E$ is (cardinality-) maximum , if there is no other matching M' s.t. |M'| > |M|

- inclusion-maximal : "no edge can be added to this matching"
 - A matching $M \subseteq E$ is inclusion-maximal, if there is no other matching M's.t. $M \subseteq M'$ (strict inclusion) and |M'| > |M|
- (cardinality-) maximum : "one can't find a bigger matching"
 - A matching $M \subseteq E$ is (cardinality-) maximum, if there is no other matching M' s.t. |M'| > |M|

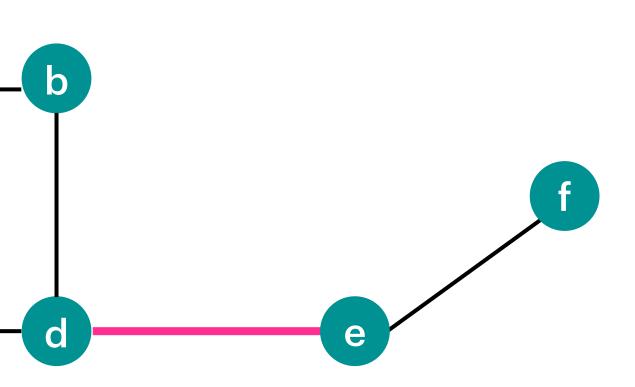
Is this maximum?



Is this inclusion-maximal?

- inclusion-maximal : "no edge can be added to this matching"
 - A matching $M \subseteq E$ is inclusion-maximal, if there is no other matching M's.t. $M \subseteq M'$ (strict inclusion) and |M'| > |M|
- (cardinality-) maximum : "one can't find a bigger matching"
 - A matching $M \subseteq E$ is (cardinality-) maximum, if there is no other matching M' s.t. |M'| > |M|

Is this maximum?



Is this inclusion-maximal?

Matching Propositions

Why?

$$|M_{inc}|$$

• M_{inc} : inclusion-maximal Matching , M_{max} : cardinality-maximum Matching

- $\leq |M_{max}|$
- $|M_{inc}| \ge |M_{max}| / 2$
- Every edge in M_{max} must have at least one endpoint in M_{inc}
 - Otherwise, that edge would be added to M_{inc}
 - $|M_{max}| \leq |Endpoints in M_{inc}| = 2 |M_{inc}|$

Matching **Greedy Algorithm**

GREEDY-MATCHING (G)1: $M \leftarrow \emptyset$ 2: while $E \neq \emptyset$ do pick an arbitrary edge $e \in E$ 3: $M \leftarrow M \cup \{e\}$ 4: remove e and all incident edges in G5:

• M_{inc} : inclusion-maximal Matching , M_{max} : cardinality-maximum Matching

$$|M_{inc}| \le |M_{max}|$$
$$|M_{inc}| \ge |M_{max}| / 2$$

 $|M_{Greedy}| \ge |M_{max}|/2$

in O(|E|)

why?

 M_{Greedy} is

inclusion-maximal

Matching Augmenting?

augment 1 of 2 verb

og-'ment ∎» aug∙ment

augmented; augmenting; augments Synonyms of *augment* >

transitive verb

to make greater, more numerous, larger, or more intense 1 The impact of the report was *augmented* by its timing.

Synonyms & Similar Words

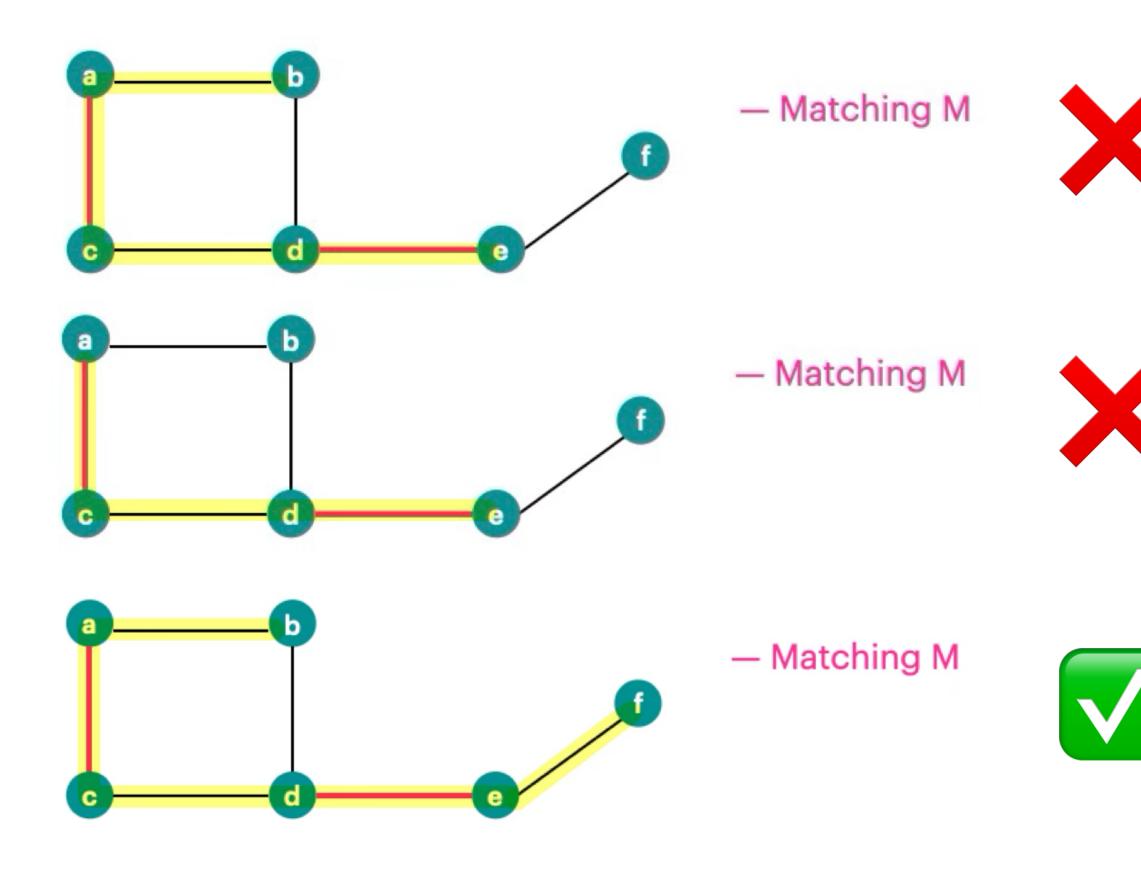
increase	expand	accelerate
boost	enhance	extend
raise	multiply	reinforce
amplify	intensify	maximize
strengthen	add (to)	enlarge
aggrandize	swell	escalate
stoke	compound	build up
supplement	pump up	up
heighten	complement	supersize
develop	prolong	lengthen
hype	inflate	skyrocket
dilate	distend	elongate

Matching **M** - Augmenting Path

- Augmenting Path : "path with edges not in M, in M, ..., not in M "
 - An augmenting path is an alternating path that starts from and ends on unmatched/not covered vertices
 - Alternating Path :
 - An alternating path is a path that begins with an unmatched/not covered vertex whose edges belong alternately to the matching and not to the matching

Matching **M** - Augmenting Path

Is this an augmenting path?

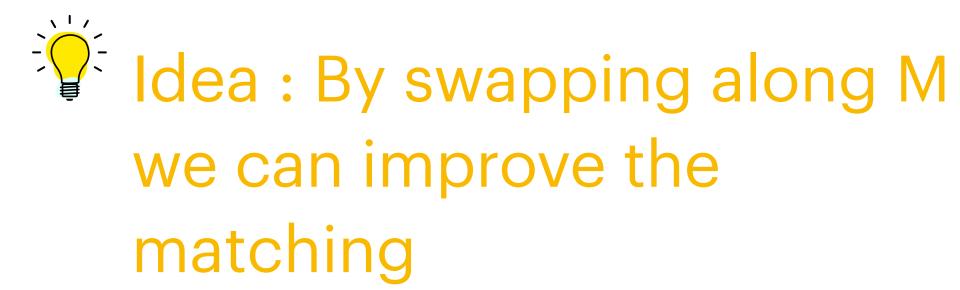


• Augmenting Path : "path with edges not in M, in M, ..., not in M"

 An augmenting path is an alternating path that starts from and ends on unmatched/not covered vertices

• Alternating Path :

• An alternating path is a path that begins with an unmatched/not covered vertex whose edges belong alternately to the matching and not to the matching



Matching Swapping?

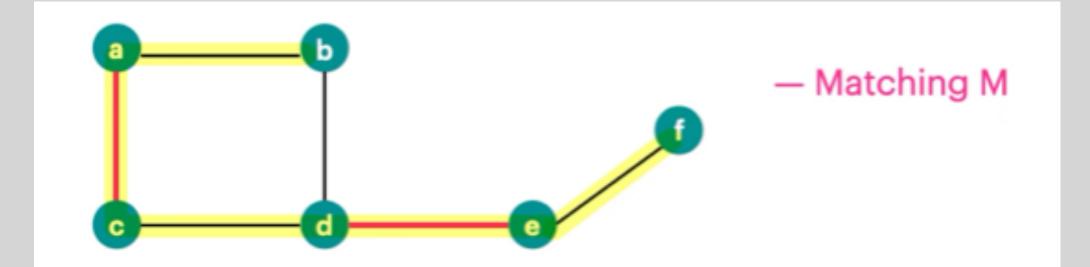
 $A = \{1, 2, 3\}$ $B = \{3, 4, 5\}$

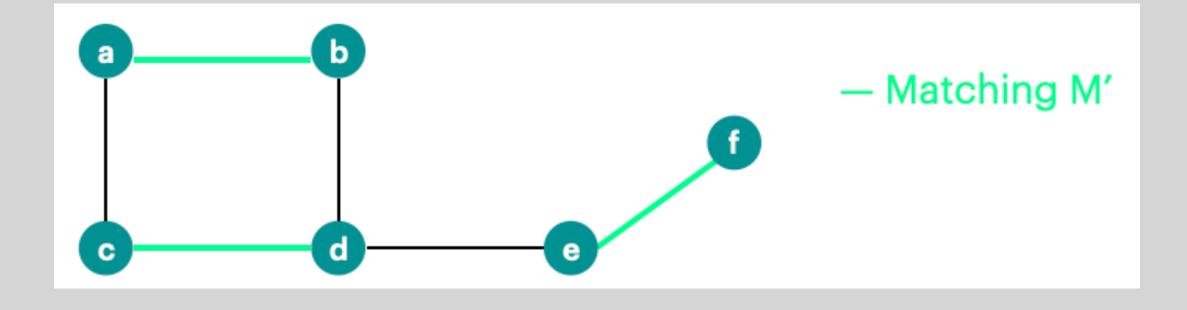
$A \oplus B$

Elements that are in A or in B but not in both

$A \oplus B = \{1,2,4,5\}$

Matching Swapping?





Matching **Berge's Theorem**

A Matching M is (cardinality-) maximum

Idea : To find the maximum matching, update/improve the matching until there is no augmenting path left

• Augmenting Path : "path with edges not in M, in M, ..., not in M"

 An augmenting path is an alternating path that starts from and ends on unmatched/not covered vertices

• Alternating Path :

• An alternating path is a path that begins with an unmatched/not covered vertex whose edges belong alternately to the matching and not to the matching

Matching Algorithm

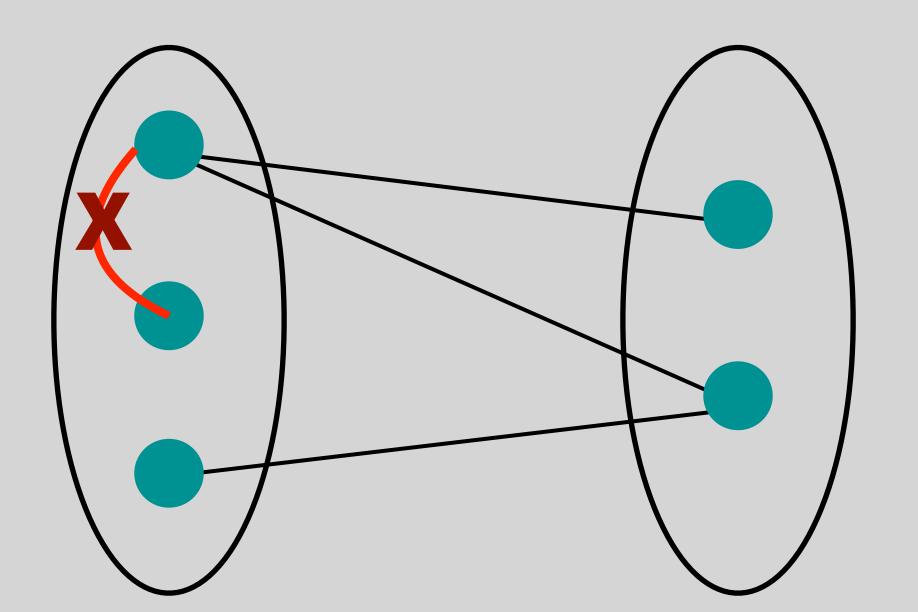
Input : G = (V, E)Output : maximum matching MAlgorithm : Start with $M = \emptyset$ while \exists augmenting path P $M = M \oplus P$ return M

Idea : Update/improve the matching until there is no augmenting path left

How do we find the augmenting path P?

bipartite Gs : with BFS general Gs in O(|V||E|)

- Bipartite Graph :
 - *U*, *V* s.t. :



• A graph G is bipartite, if you can split the set of vertices V into two sets

$E \subseteq \{ \{u, v\} : u \in U, v \in V \}$

- k-regular
 - A graph G is k-regular, if every vertex has a degree of k

$deg(v) = k \quad \forall v \in V$

Matching Perfect Matching finding

bipartite ?	k-regular	runtime
	2 ^ĸ	O(E)
	k	O(E)
		O(V • E)

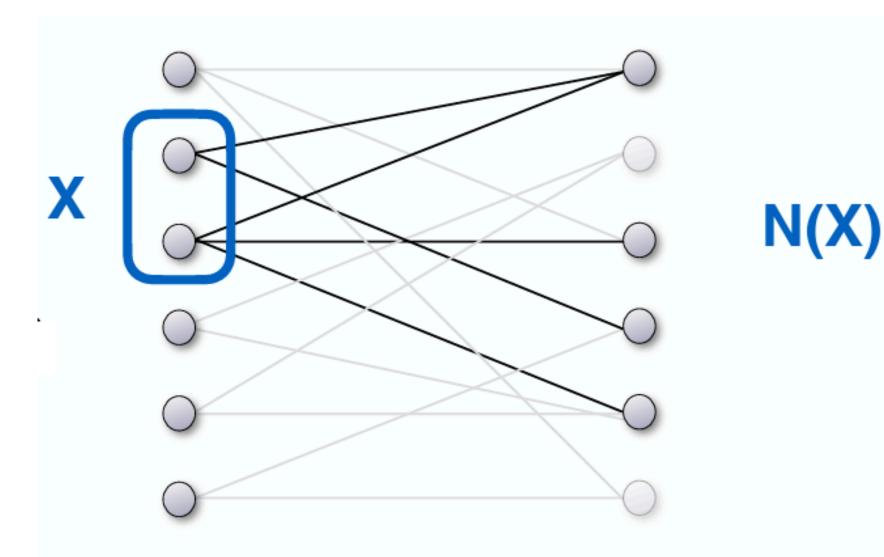
Matching Hall's Marriage Theorem

A bipartite $G = (A \cup B, E)$

has a Matching M with cardinality |M| = |A|

Corollary : Every k-regular bipartite G has a perfect matching

$\forall X \subseteq A : |X| \leq |N(X)|$



N(X) := "neighbours of vertices in X"

Matching Algorithm - revisit

Input : G = (V, E)

Output : maximum matching M

Algorithm :

Start with $M = \emptyset$ while \exists augmenting path P

 $M = M \oplus P$

return M

Idea : Update/improve the matching until there is no augmenting path left

How do we find the augmenting path P?

bipartite Gs : with BFS general Gs in O(|V||E|)

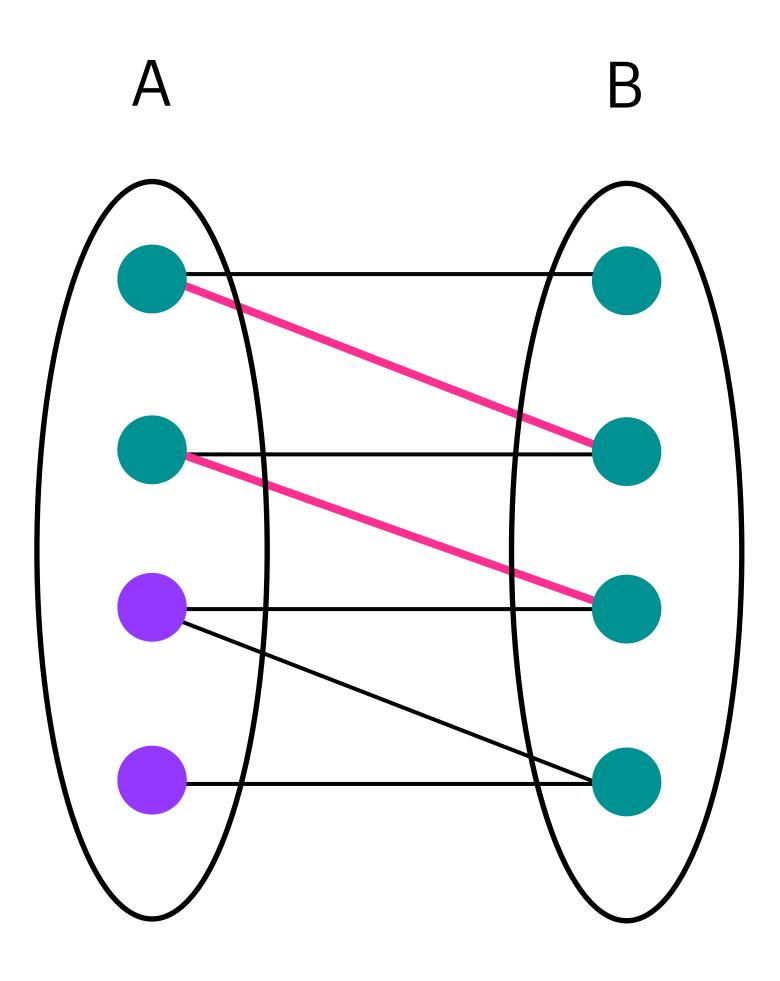
BFS + this -> O (|V| |E|)

Matching **BFS for augmenting paths**

Algorithm :

L₀ := {uncovered vertices from A}

Input : A bipartite $G = (A \cup B, E)$, Matching M Output : (shortest) augmenting path (if there is one)



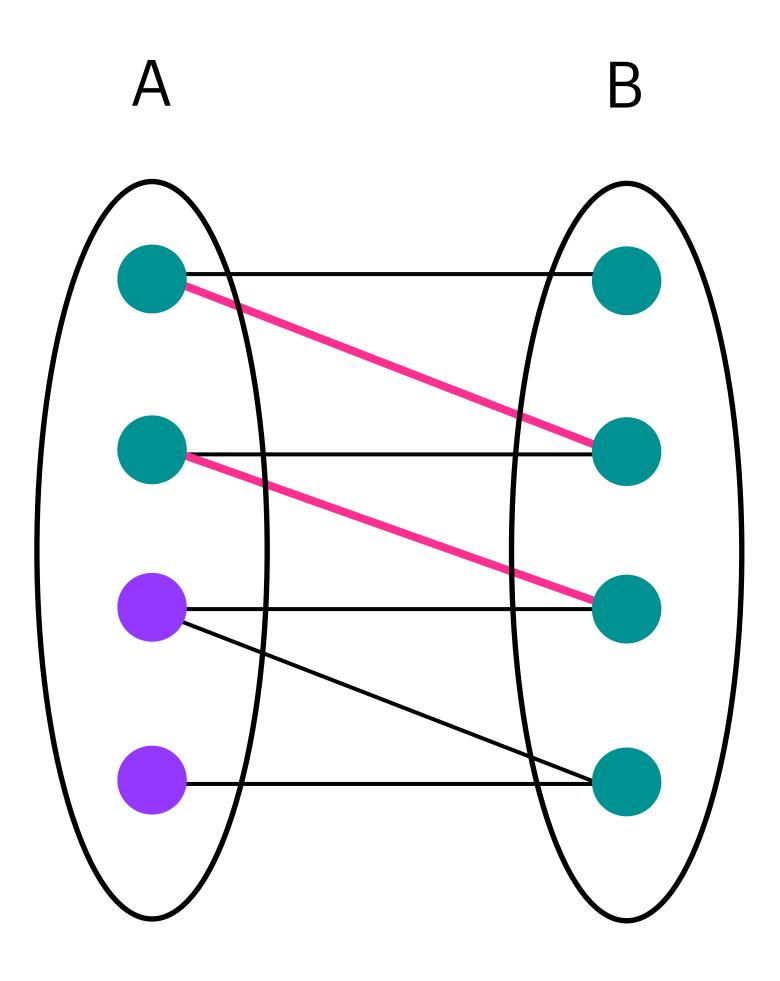
Matching **BFS for augmenting paths**

Algorithm :

L₀ := {uncovered vertices from A}

Mark L₀ as visited

Input : A bipartite $G = (A \cup B, E)$, Matching M Output : (shortest) augmenting path (if there is one)



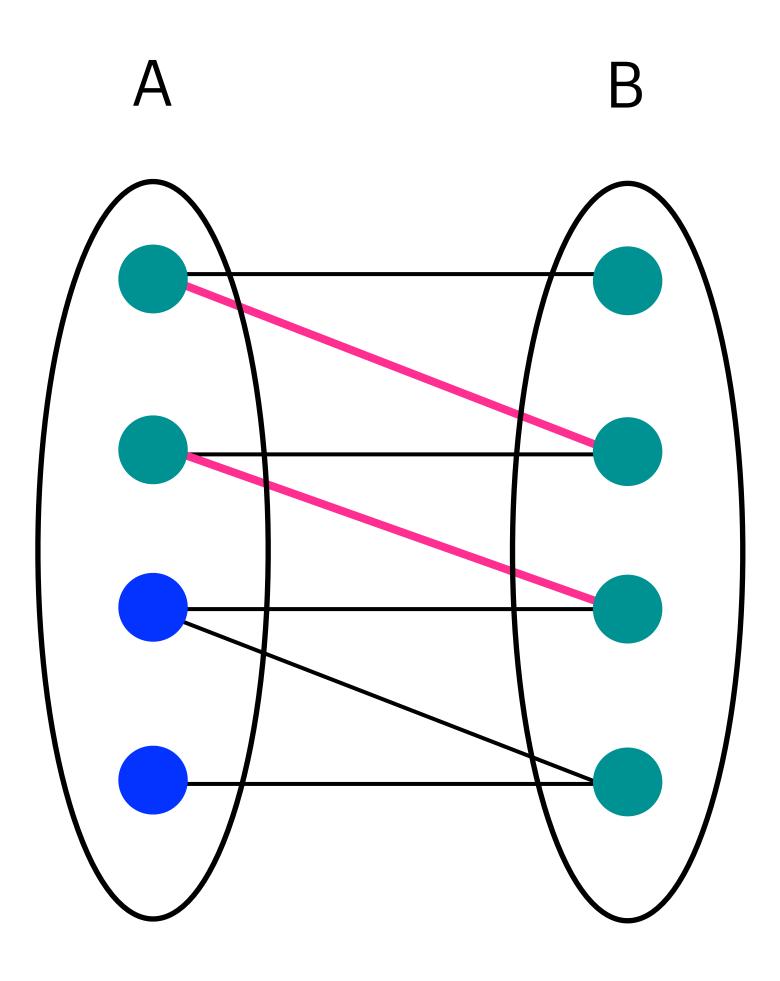
Matching **BFS for augmenting paths**

Algorithm :

L₀ := {uncovered vertices from A}

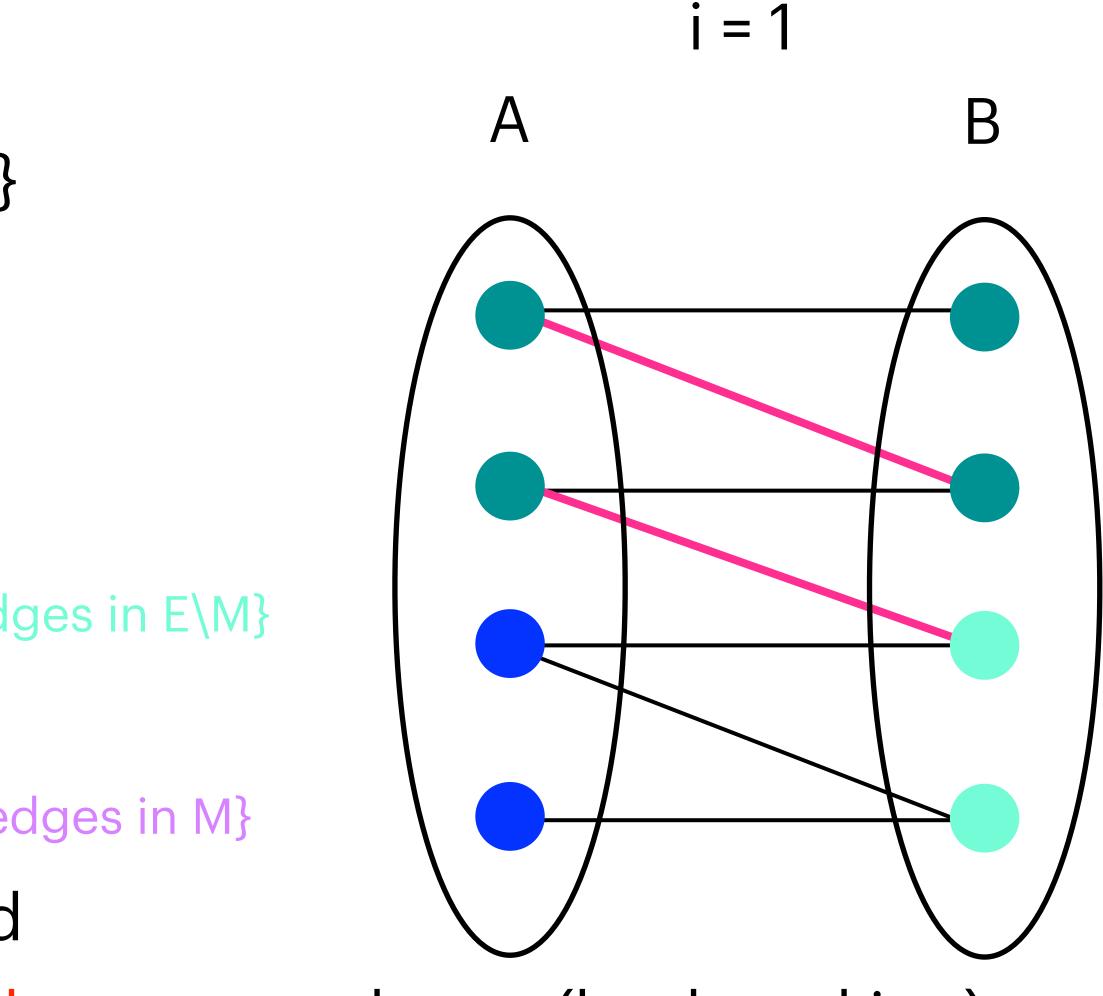
Mark L₀ as visited

Input : A bipartite $G = (A \cup B, E)$, Matching M Output : (shortest) augmenting path (if there is one)



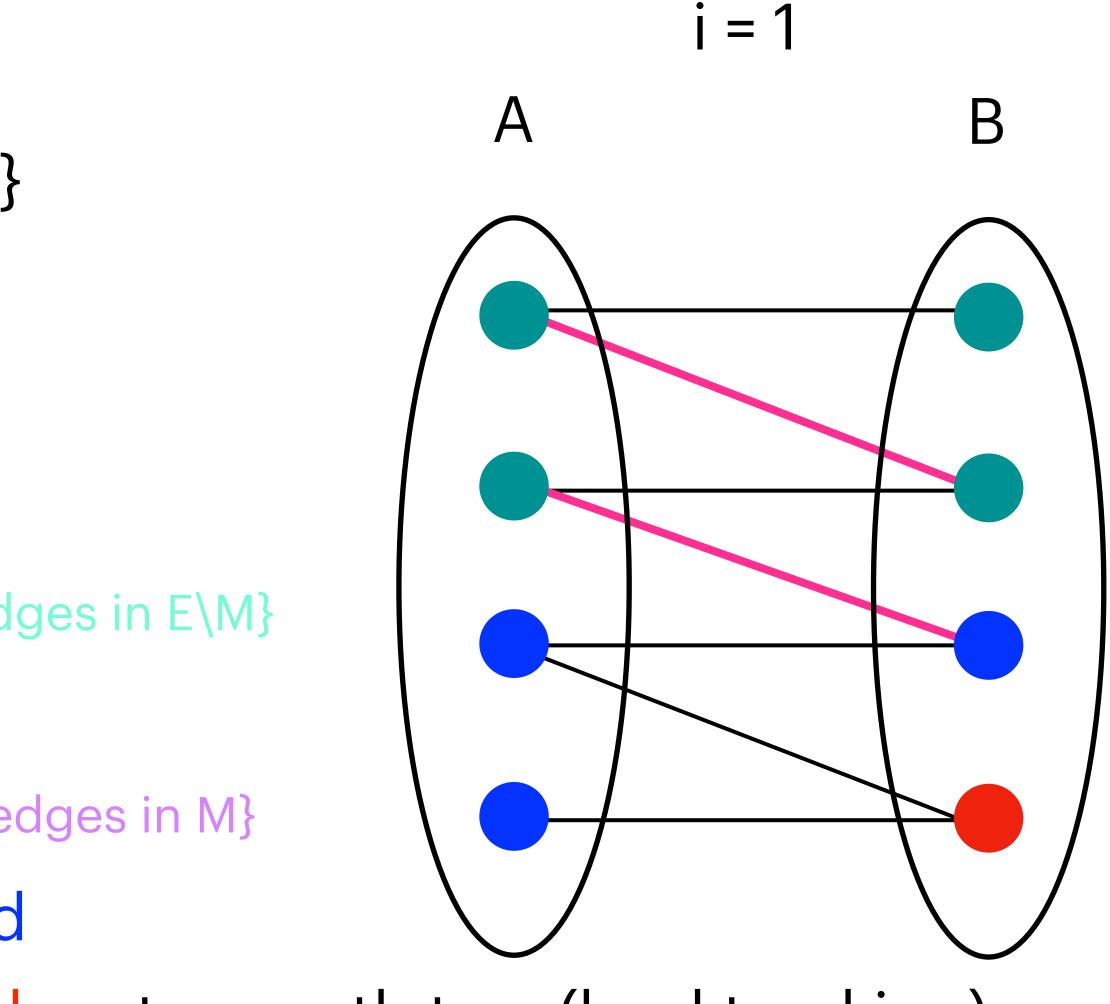
Algorithm : Α L₀ := {uncovered vertices from A} Mark L₀ as visited for i = 1 to n if i is odd then $L_i := \{unvisited neigbours of L_{i-1} via edges in E \setminus M\}$ if i is even then L_i := {unvisited neighbours of L_{i-1} via edges in M} mark vertices from L_i as visited if a vertex v in L_i is not covered : return path to v (backtracking)

Input : A bipartite $G = (A \cup B, E)$, Matching M Output : (shortest) augmenting path (if there is one)



Algorithm : L₀ := {uncovered vertices from A} Mark L₀ as visited for i = 1 to n if i is odd then $L_i := \{$ unvisited neigbours of L_{i-1} via edges in $E \setminus M \}$ if i is even then L_i := {unvisited neighbours of L_{i-1} via edges in M} mark vertices from L_i as visited

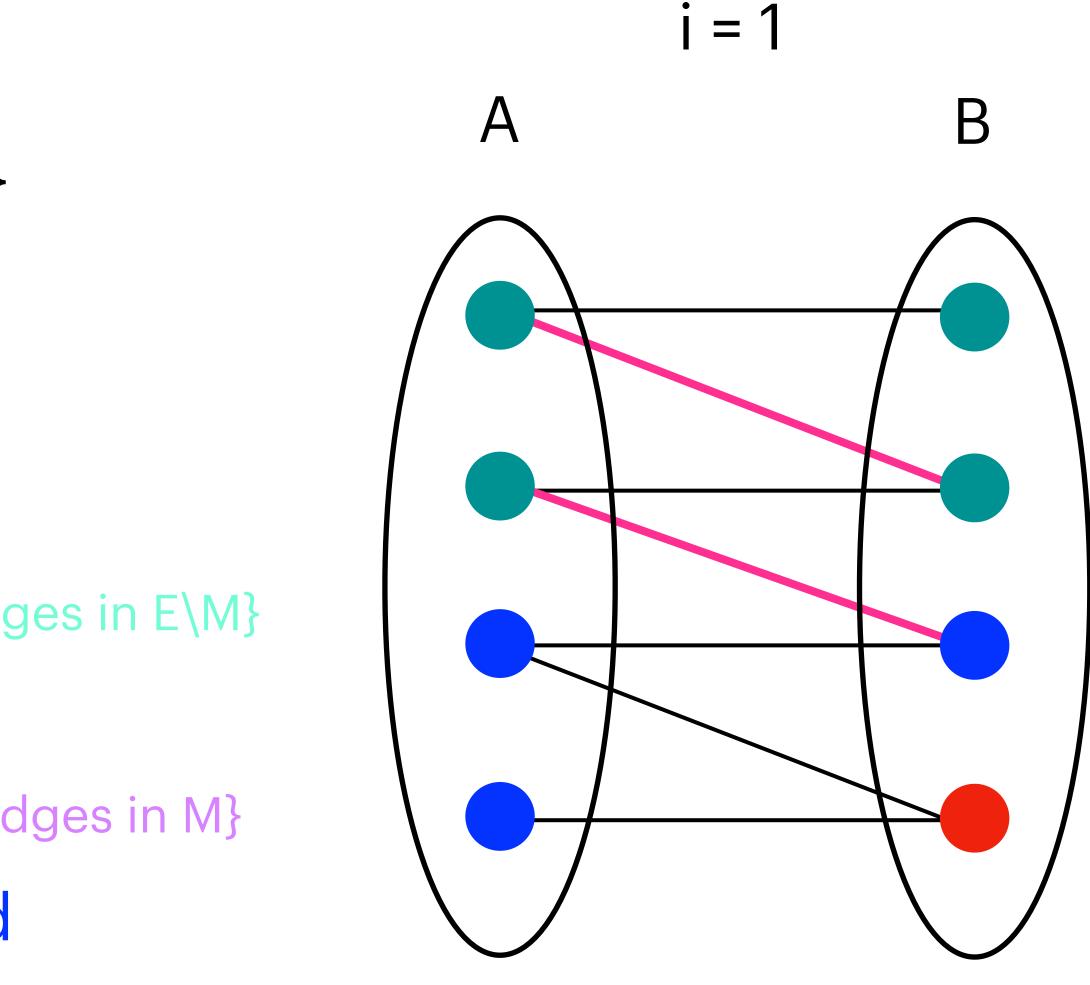
Input : A bipartite $G = (A \cup B, E)$, Matching M Output : (shortest) augmenting path (if there is one)



if a vertex v in L_i is not covered : return path to v (backtracking)

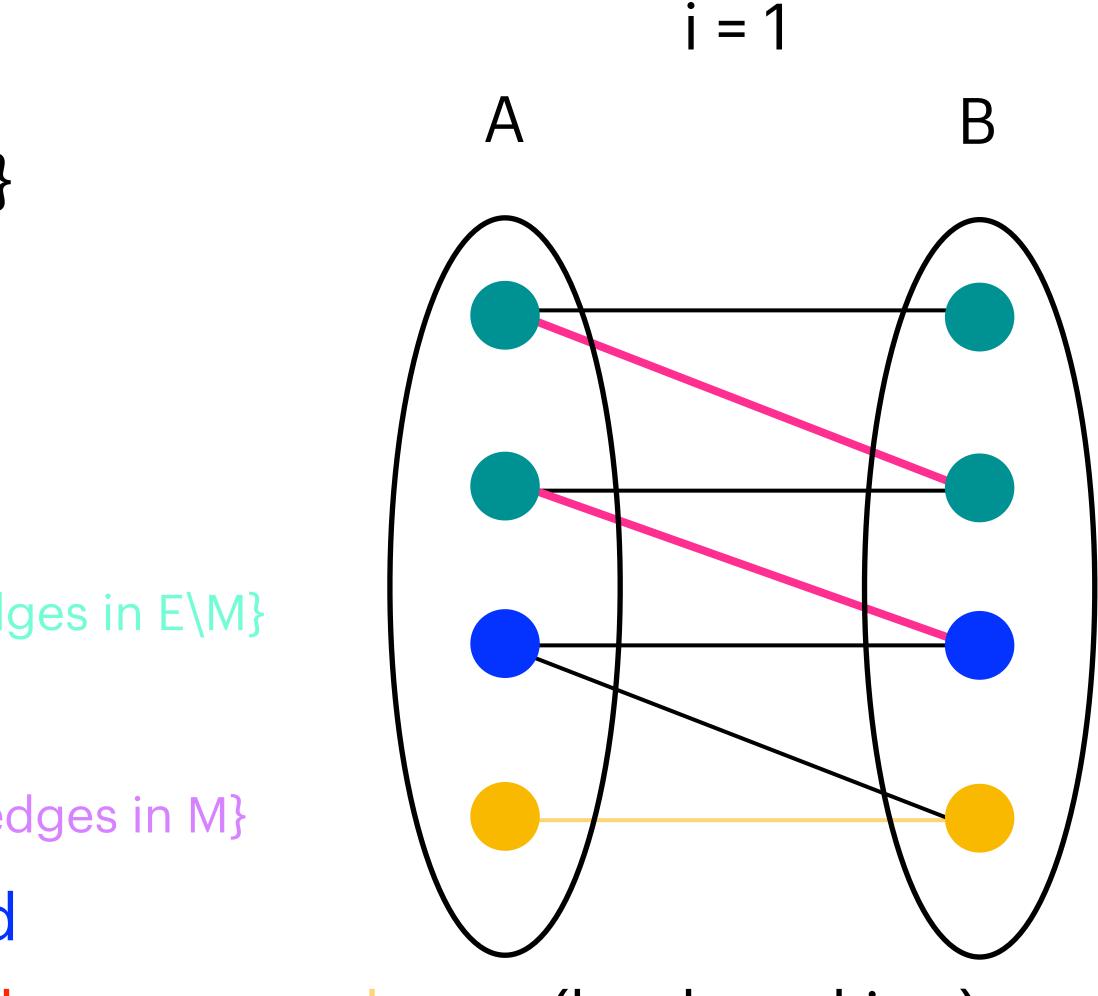
Algorithm : L₀ := {uncovered vertices from A} Mark L₀ as visited for i = 1 to n if i is odd then $L_i := \{$ unvisited neigbours of L_{i-1} via edges in $E \setminus M \}$ if i is even then L_i := {unvisited neighbours of L_{i-1} via edges in M} mark vertices from L_i as visited

Input : A bipartite $G = (A \cup B, E)$, Matching M Output : (shortest) augmenting path (if there is one)



Algorithm : L₀ := {uncovered vertices from A} Mark L₀ as visited for i = 1 to n if i is odd then $L_i := \{$ unvisited neigbours of L_{i-1} via edges in $E \setminus M \}$ if i is even then L_i := {unvisited neighbours of L_{i-1} via edges in M} mark vertices from L_i as visited

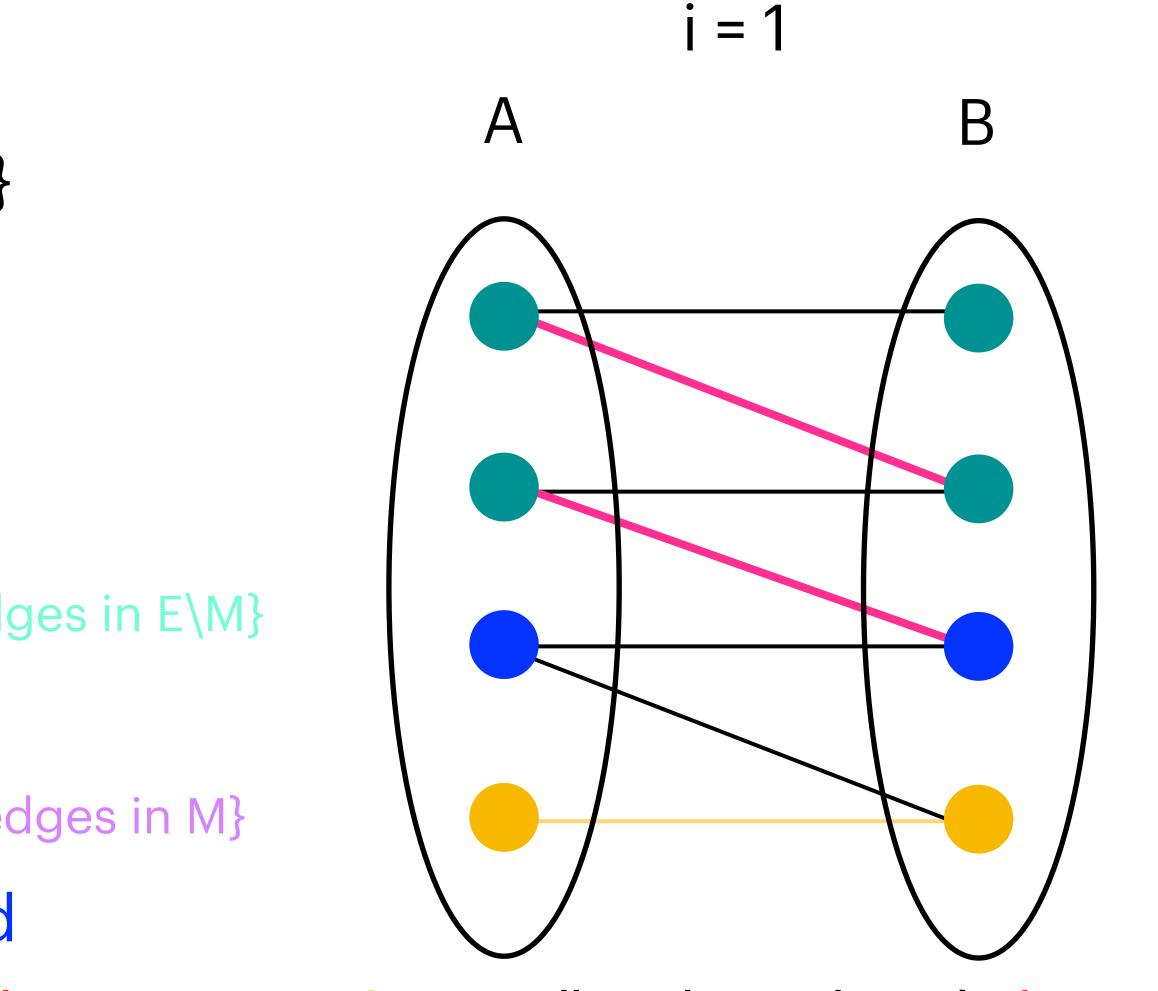
Input : A bipartite $G = (A \cup B, E)$, Matching M Output : (shortest) augmenting path (if there is one)



if a vertex v in L_i is not covered : return path to v (backtracking)

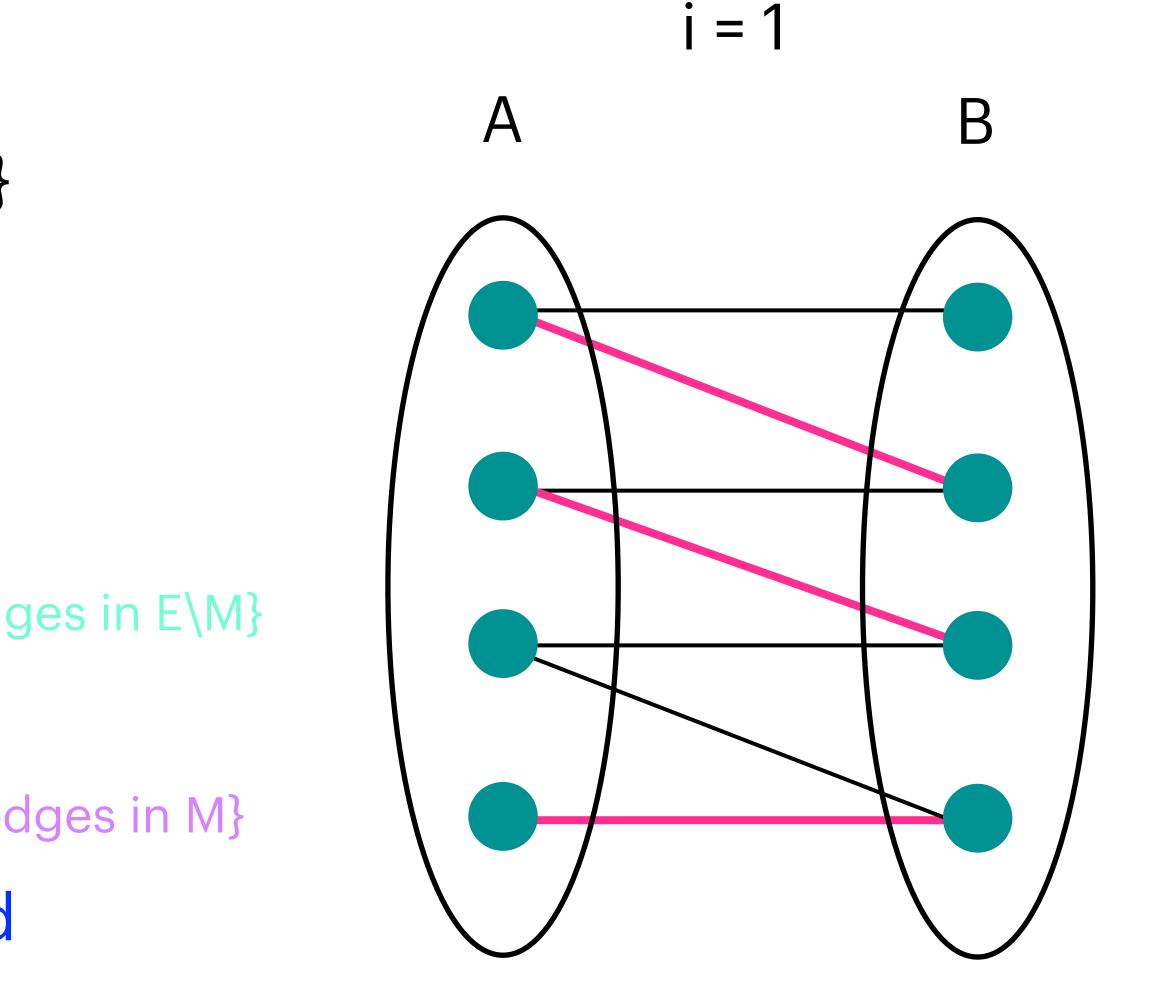
Algorithm : L₀ := {uncovered vertices from A} Mark L₀ as visited for i = 1 to n if i is odd then $L_i := \{$ unvisited neigbours of L_{i-1} via edges in $E \setminus M \}$ if i is even then L_i := {unvisited neighbours of L_{i-1} via edges in M} mark vertices from L_i as visited

Input : A bipartite $G = (A \cup B, E)$, Matching M Output : (shortest) augmenting path (if there is one)



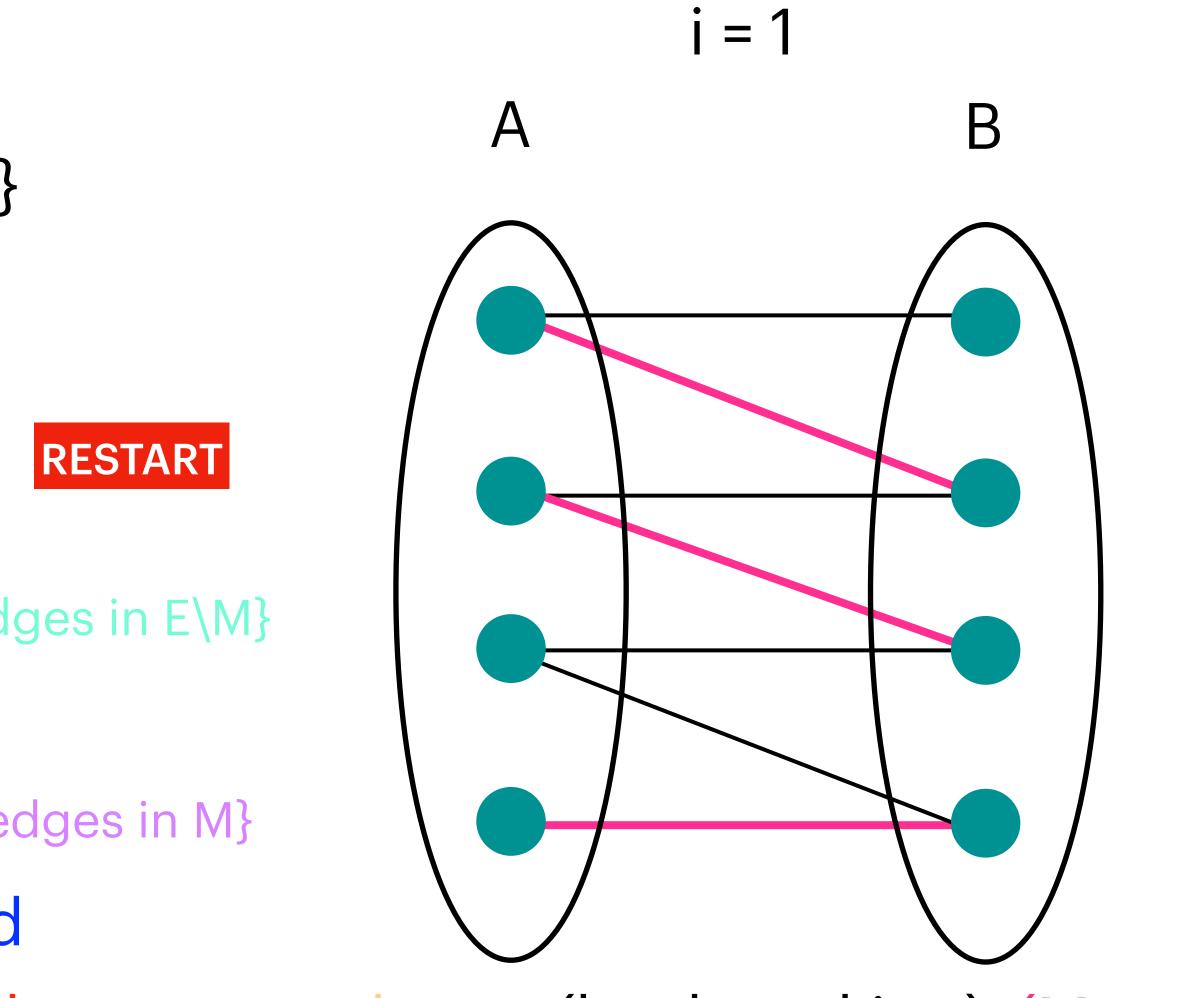
Algorithm : L₀ := {uncovered vertices from A} Mark L₀ as visited for i = 1 to n if i is odd then $L_i := \{$ unvisited neigbours of L_{i-1} via edges in $E \setminus M \}$ if i is even then L_i := {unvisited neighbours of L_{i-1} via edges in M} mark vertices from L_i as visited

Input : A bipartite $G = (A \cup B, E)$, Matching M Output : (shortest) augmenting path (if there is one)



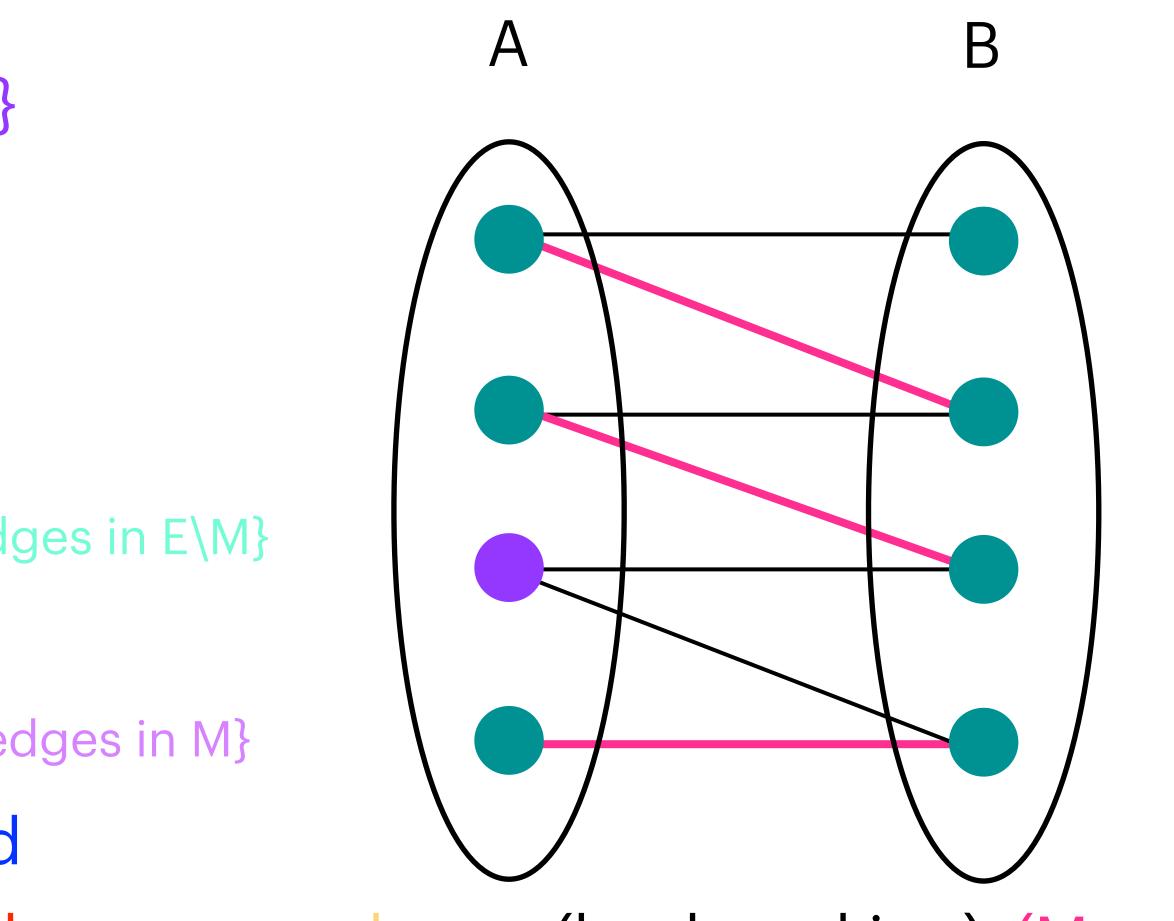
Algorithm : L₀ := {uncovered vertices from A} Mark L₀ as visited for i = 1 to n if i is odd then $L_i := \{$ unvisited neigbours of L_{i-1} via edges in $E \setminus M \}$ if i is even then L_i := {unvisited neighbours of L_{i-1} via edges in M} mark vertices from L_i as visited

Input : A bipartite $G = (A \cup B, E)$, Matching M Output : (shortest) augmenting path (if there is one)



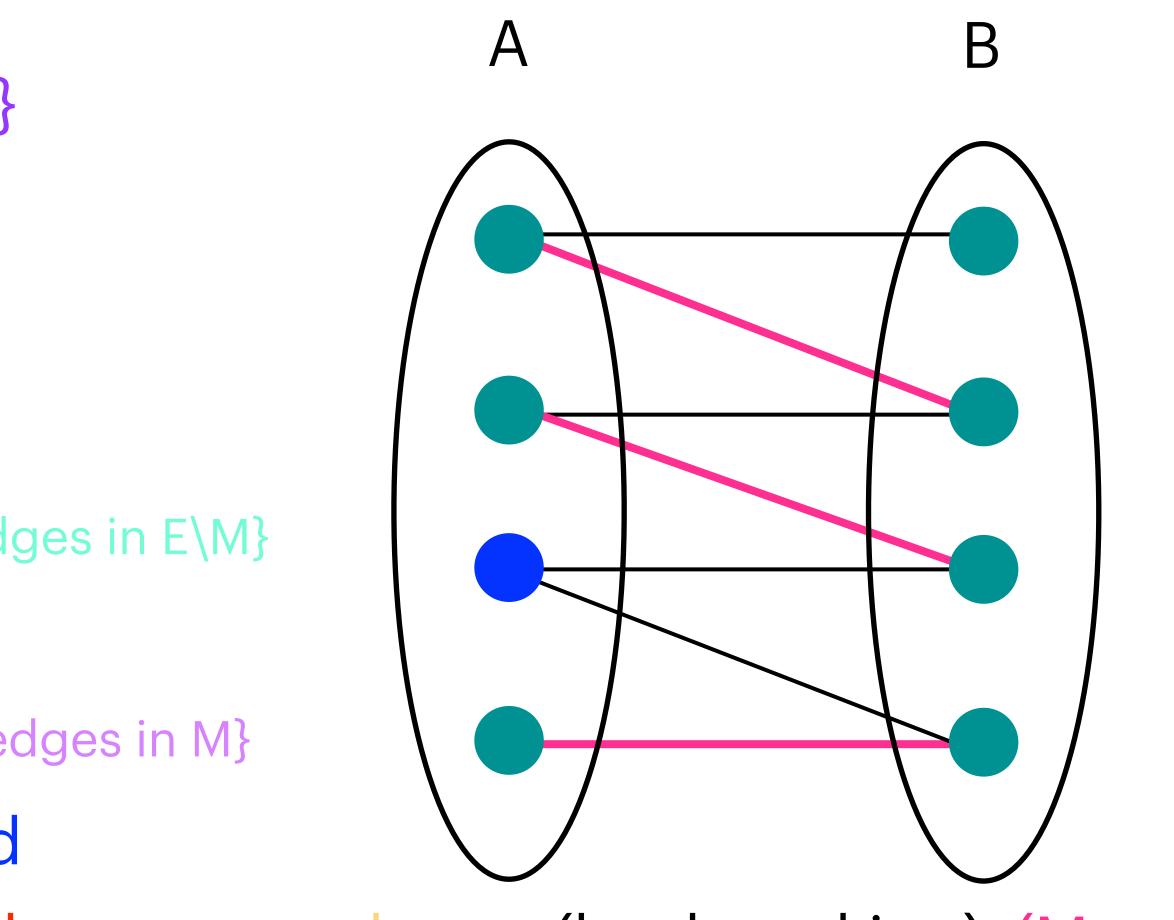
Algorithm : L₀ := {uncovered vertices from A} Mark L₀ as visited for i = 1 to n if i is odd then $L_i := \{$ unvisited neigbours of L_{i-1} via edges in $E \setminus M \}$ if i is even then L_i := {unvisited neighbours of L_{i-1} via edges in M} mark vertices from L_i as visited

Input : A bipartite $G = (A \cup B, E)$, Matching M Output : (shortest) augmenting path (if there is one)



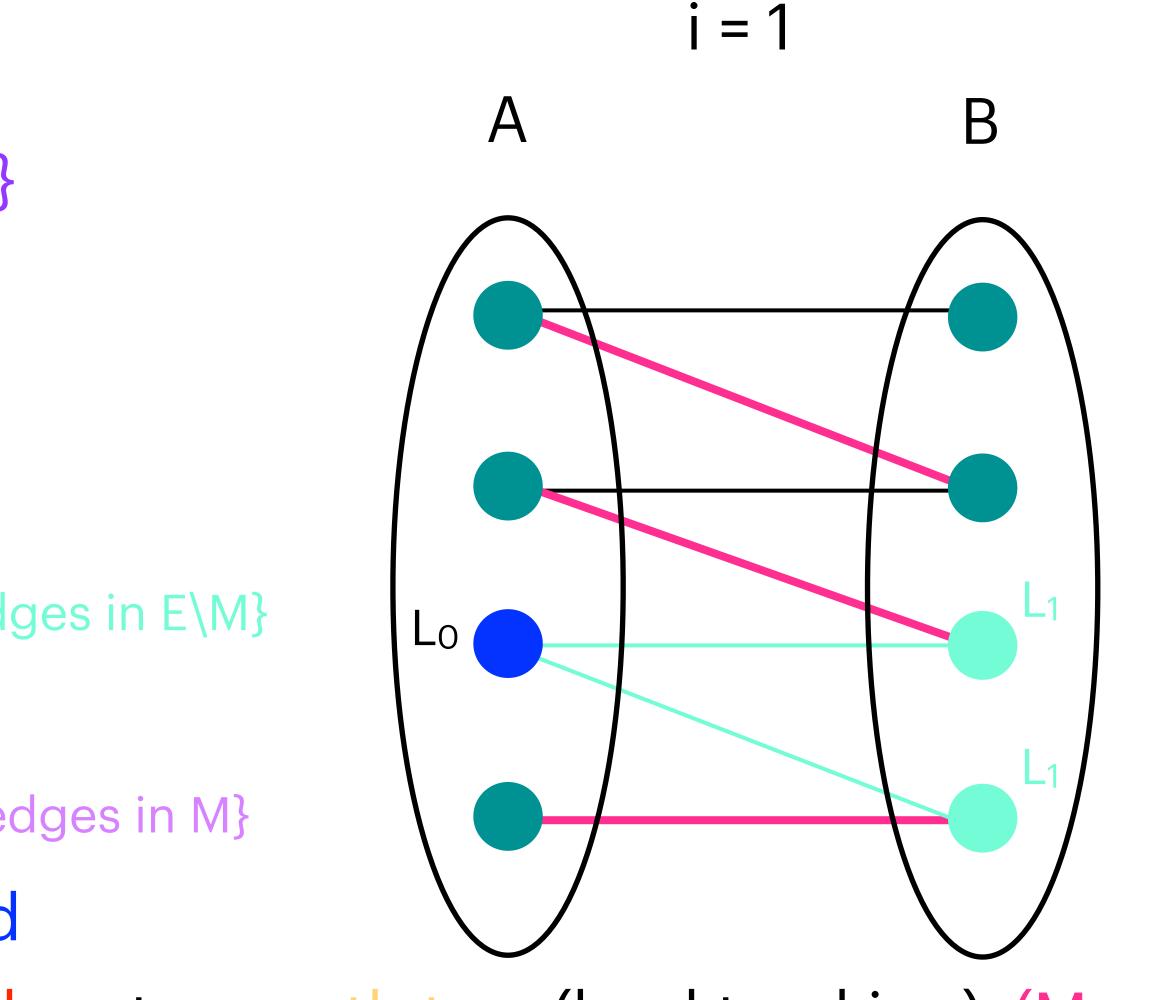
Algorithm : L₀ := {uncovered vertices from A} Mark L₀ as visited for i = 1 to n if i is odd then $L_i := \{$ unvisited neigbours of L_{i-1} via edges in $E \setminus M \}$ if i is even then L_i := {unvisited neighbours of L_{i-1} via edges in M} mark vertices from L_i as visited

Input : A bipartite $G = (A \cup B, E)$, Matching M Output : (shortest) augmenting path (if there is one)



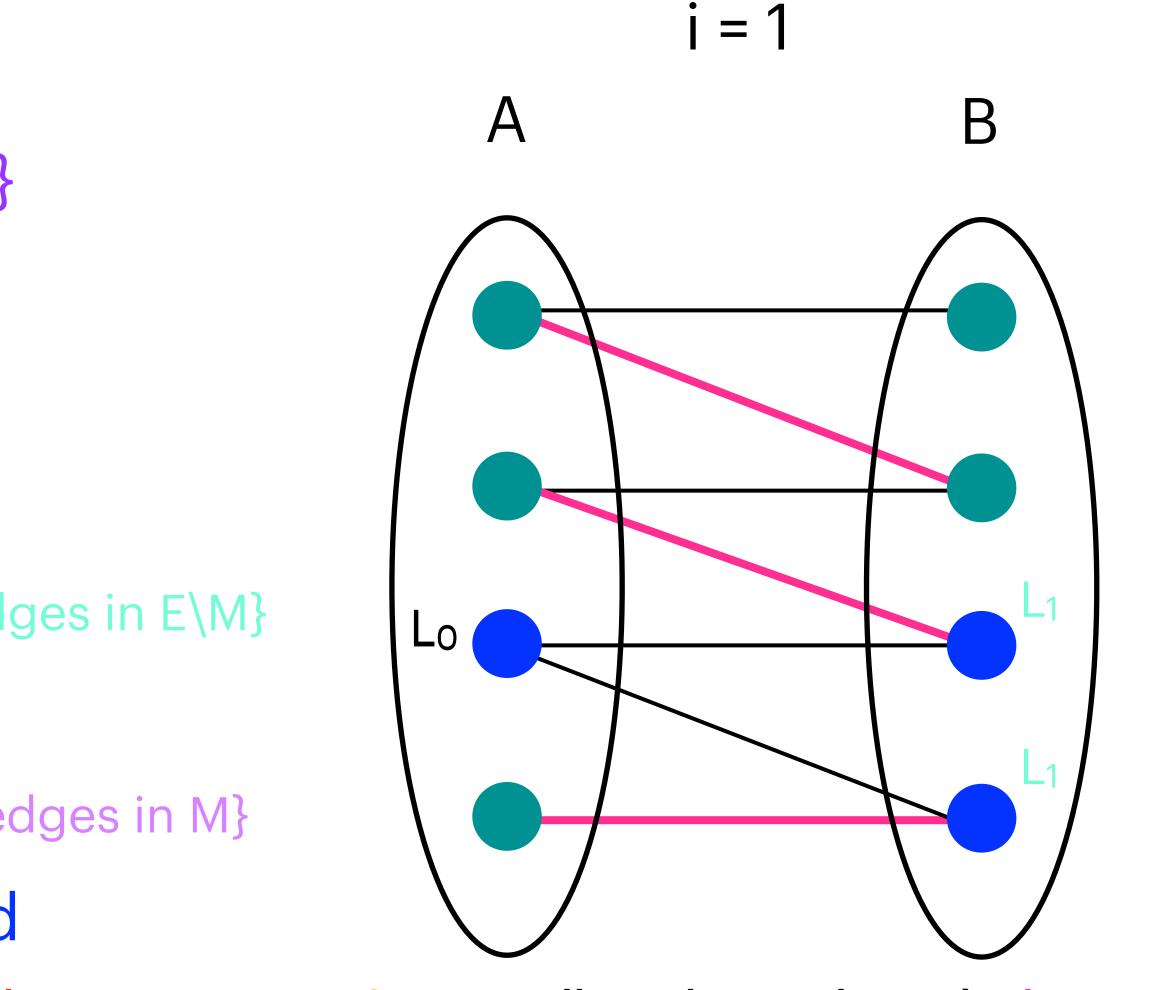
Algorithm : L₀ := {uncovered vertices from A} Mark L₀ as visited for i = 1 to n if i is odd then $L_i := \{$ unvisited neigbours of L_{i-1} via edges in $E \setminus M \}$ if i is even then L_i := {unvisited neighbours of L_{i-1} via edges in M} mark vertices from L_i as visited

Input : A bipartite $G = (A \cup B, E)$, Matching M Output : (shortest) augmenting path (if there is one)



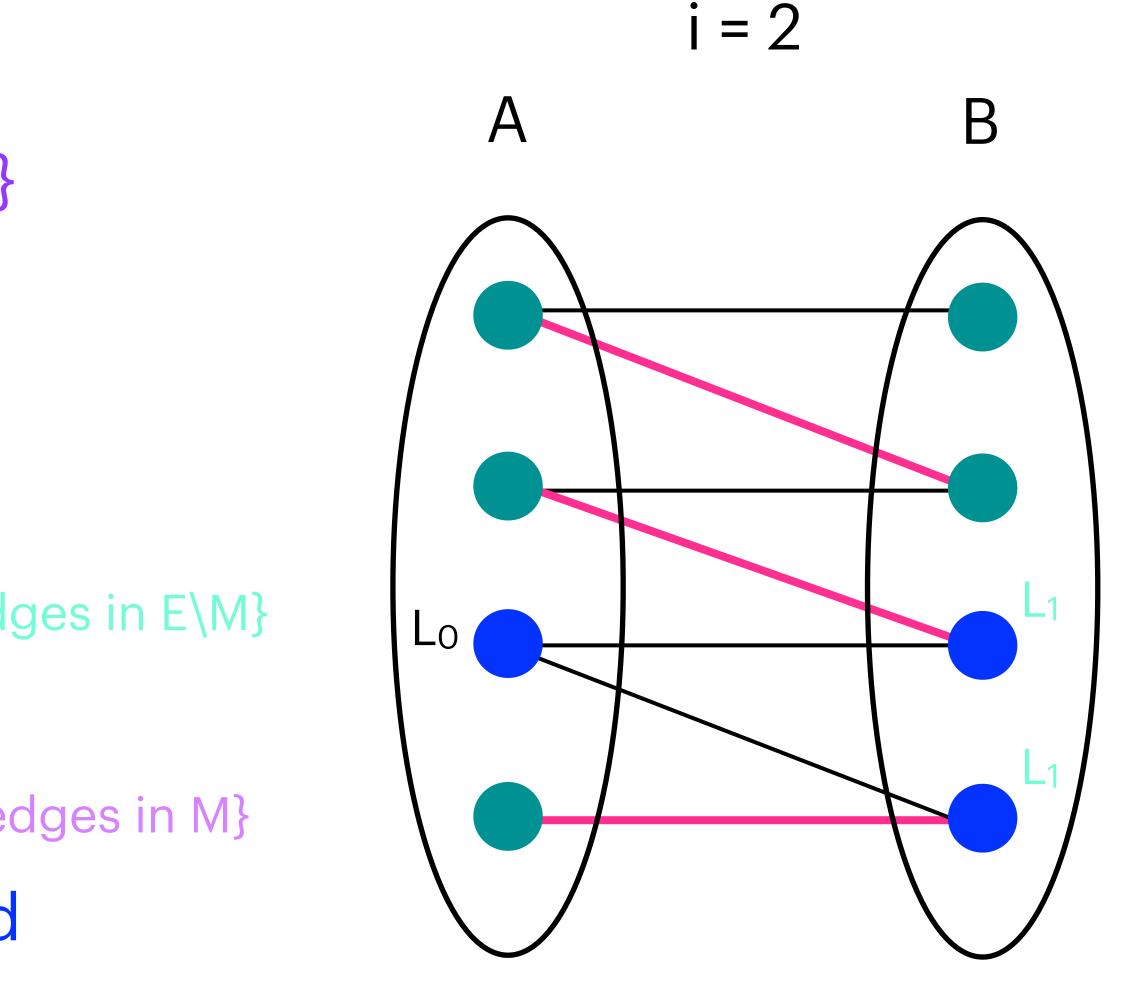
Algorithm : L₀ := {uncovered vertices from A} Mark L₀ as visited for i = 1 to n if i is odd then $L_i := \{$ unvisited neigbours of L_{i-1} via edges in $E \setminus M \}$ if i is even then L_i := {unvisited neighbours of L_{i-1} via edges in M} mark vertices from L_i as visited

Input : A bipartite $G = (A \cup B, E)$, Matching M Output : (shortest) augmenting path (if there is one)



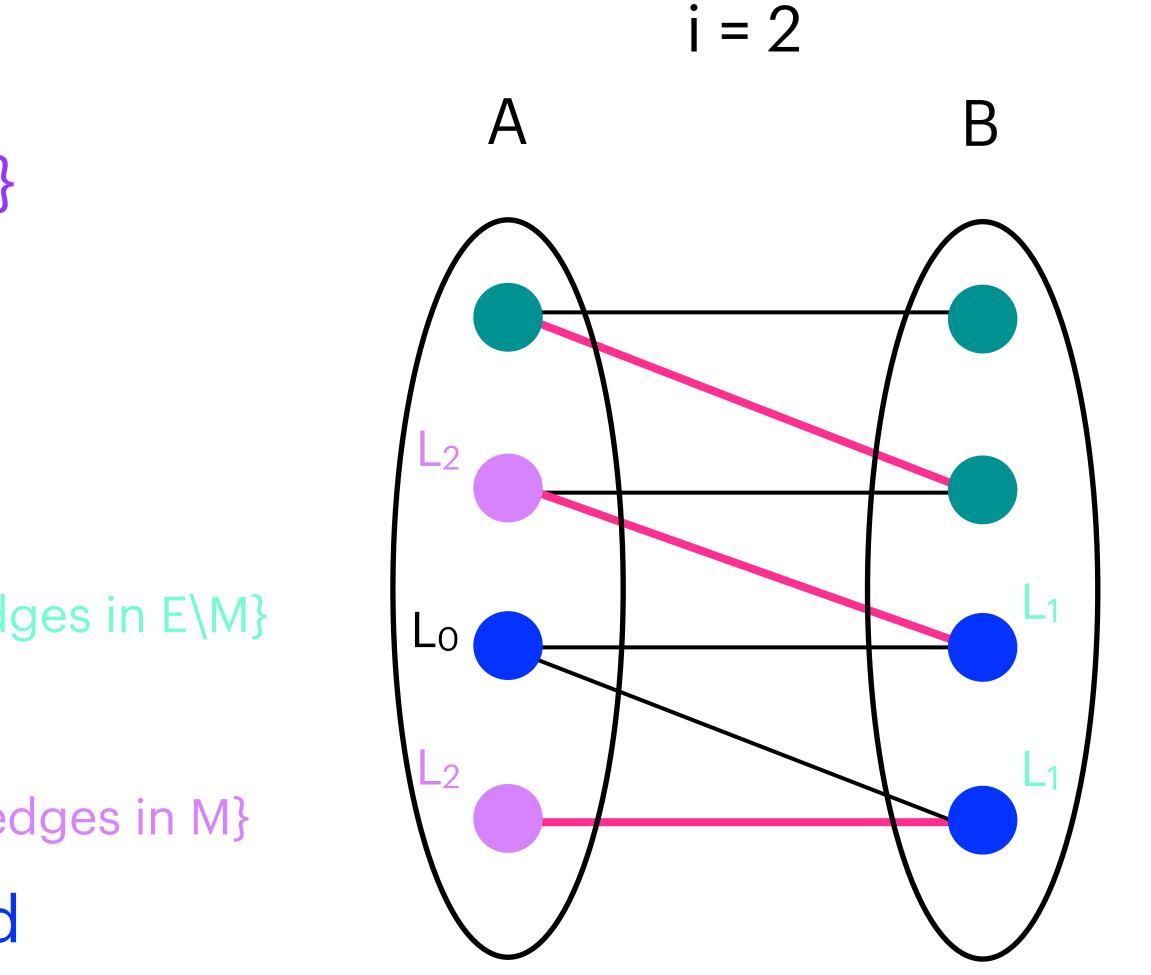
Algorithm : L₀ := {uncovered vertices from A} Mark L₀ as visited for i = 1 to n if i is odd then $L_i := \{$ unvisited neigbours of L_{i-1} via edges in $E \setminus M \}$ if i is even then L_i := {unvisited neighbours of L_{i-1} via edges in M} mark vertices from L_i as visited

Input : A bipartite $G = (A \cup B, E)$, Matching M Output : (shortest) augmenting path (if there is one)



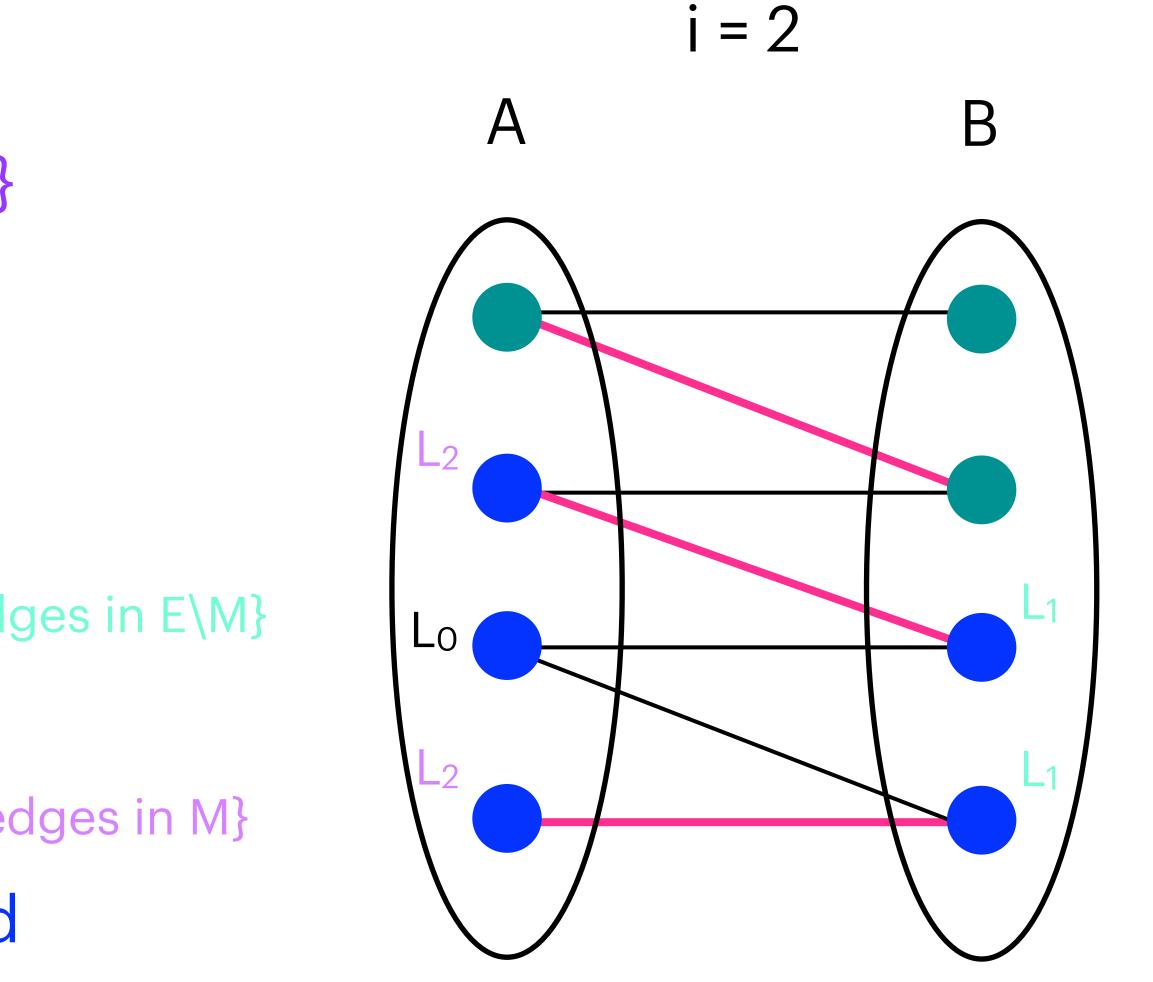
Algorithm : L₀ := {uncovered vertices from A} Mark L₀ as visited for i = 1 to n if i is odd then $L_i := \{$ unvisited neigbours of L_{i-1} via edges in $E \setminus M \}$ if i is even then L_i := {unvisited neighbours of L_{i-1} via edges in M} mark vertices from L_i as visited

Input : A bipartite $G = (A \cup B, E)$, Matching M Output : (shortest) augmenting path (if there is one)



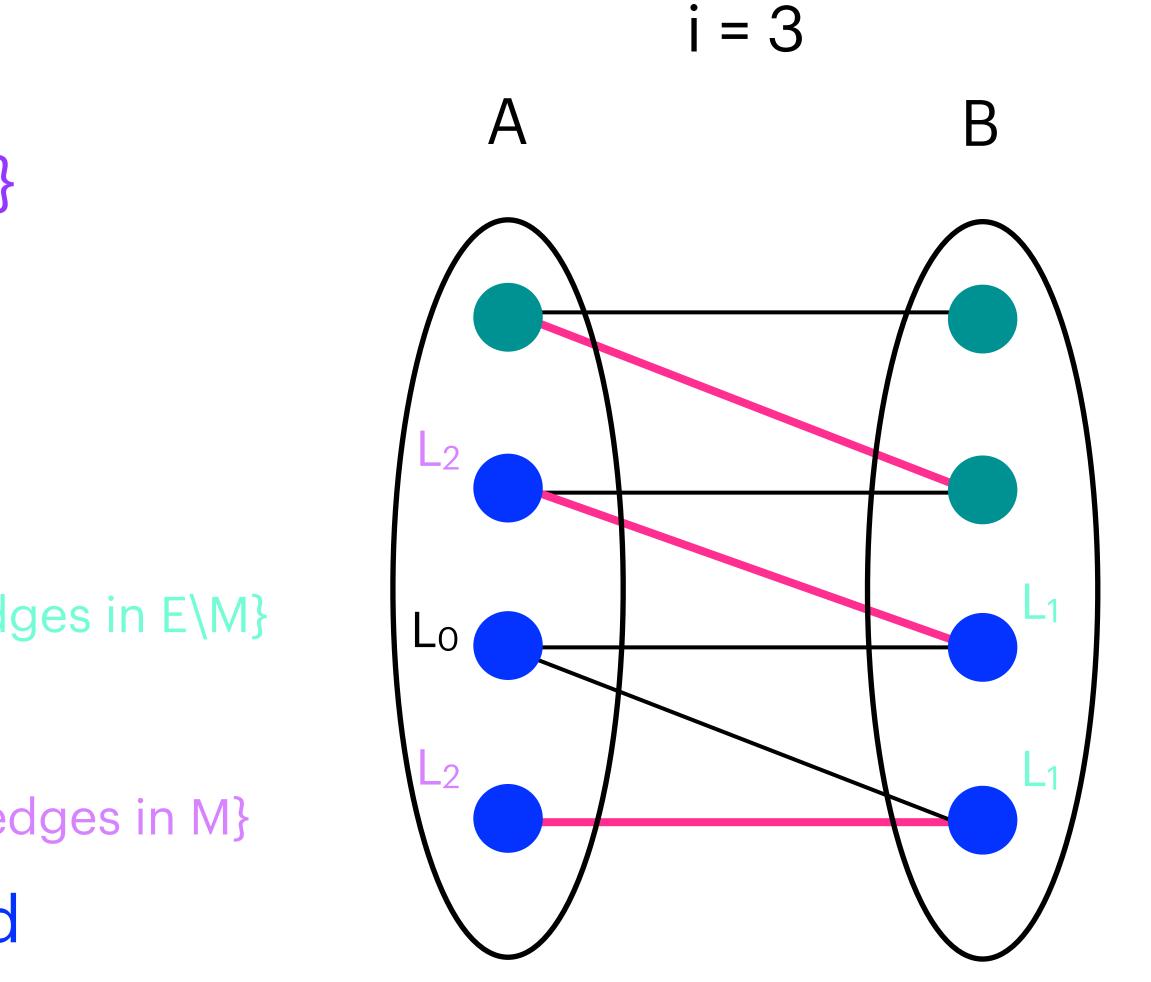
Algorithm : L₀ := {uncovered vertices from A} Mark L₀ as visited for i = 1 to n if i is odd then $L_i := \{$ unvisited neigbours of L_{i-1} via edges in $E \setminus M \}$ if i is even then L_i := {unvisited neighbours of L_{i-1} via edges in M} mark vertices from L_i as visited

Input : A bipartite $G = (A \cup B, E)$, Matching M Output : (shortest) augmenting path (if there is one)



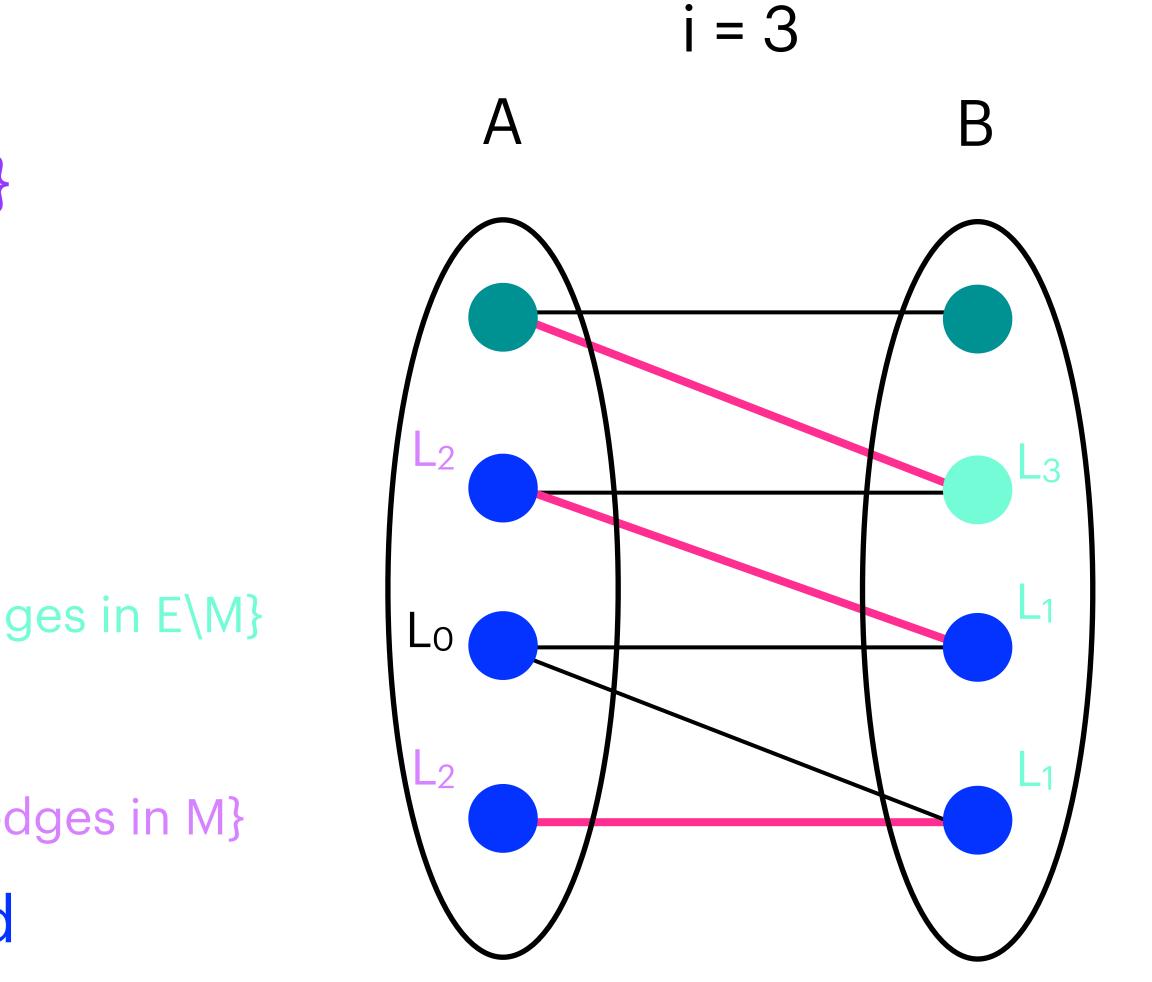
Algorithm : L₀ := {uncovered vertices from A} Mark L₀ as visited for i = 1 to n if i is odd then $L_i := \{$ unvisited neigbours of L_{i-1} via edges in $E \setminus M \}$ if i is even then L_i := {unvisited neighbours of L_{i-1} via edges in M} mark vertices from L_i as visited

Input : A bipartite $G = (A \cup B, E)$, Matching M Output : (shortest) augmenting path (if there is one)



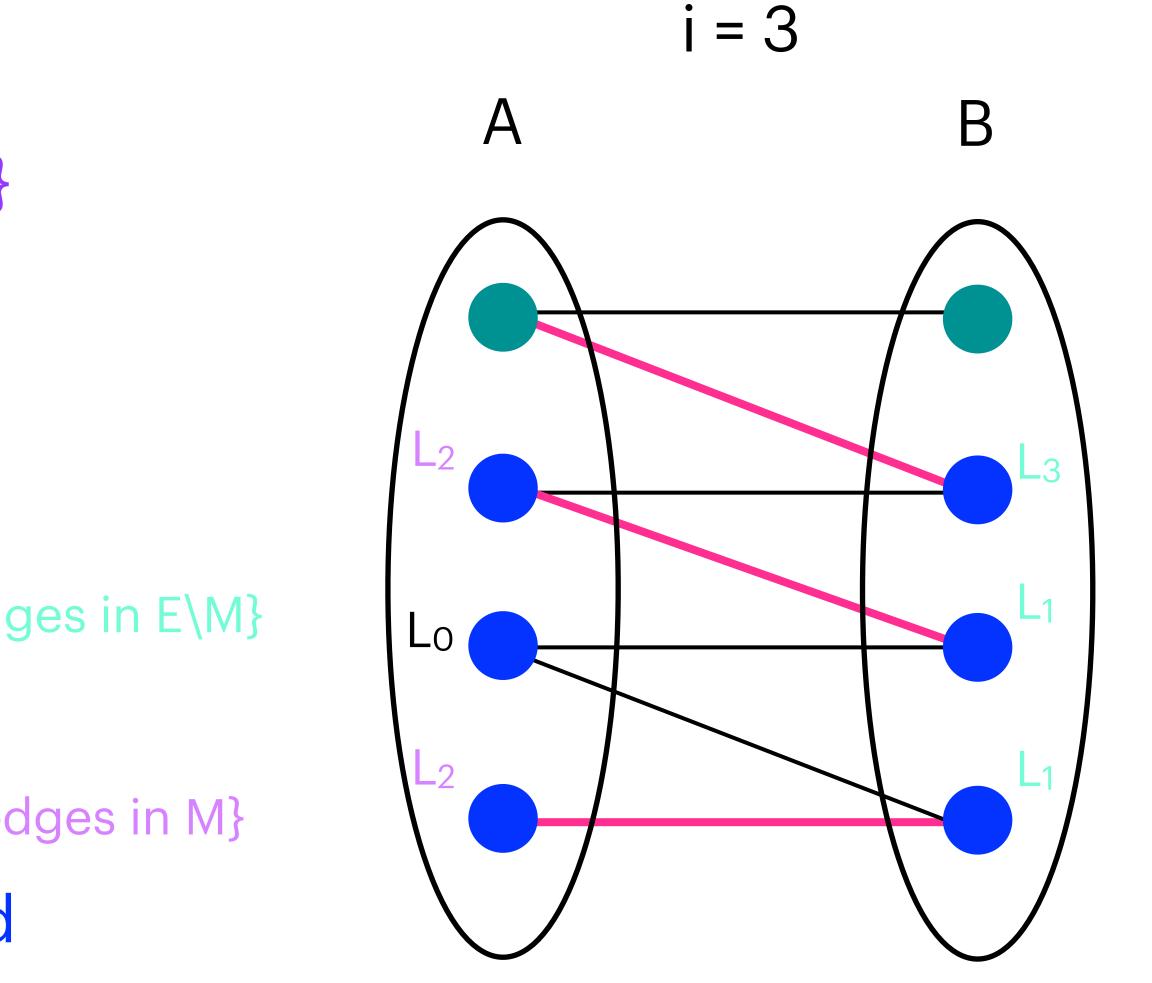
Algorithm : L₀ := {uncovered vertices from A} Mark L₀ as visited for i = 1 to n if i is odd then $L_i := \{$ unvisited neigbours of L_{i-1} via edges in $E \setminus M \}$ if i is even then L_i := {unvisited neighbours of L_{i-1} via edges in M} mark vertices from L_i as visited

Input : A bipartite $G = (A \cup B, E)$, Matching M Output : (shortest) augmenting path (if there is one)



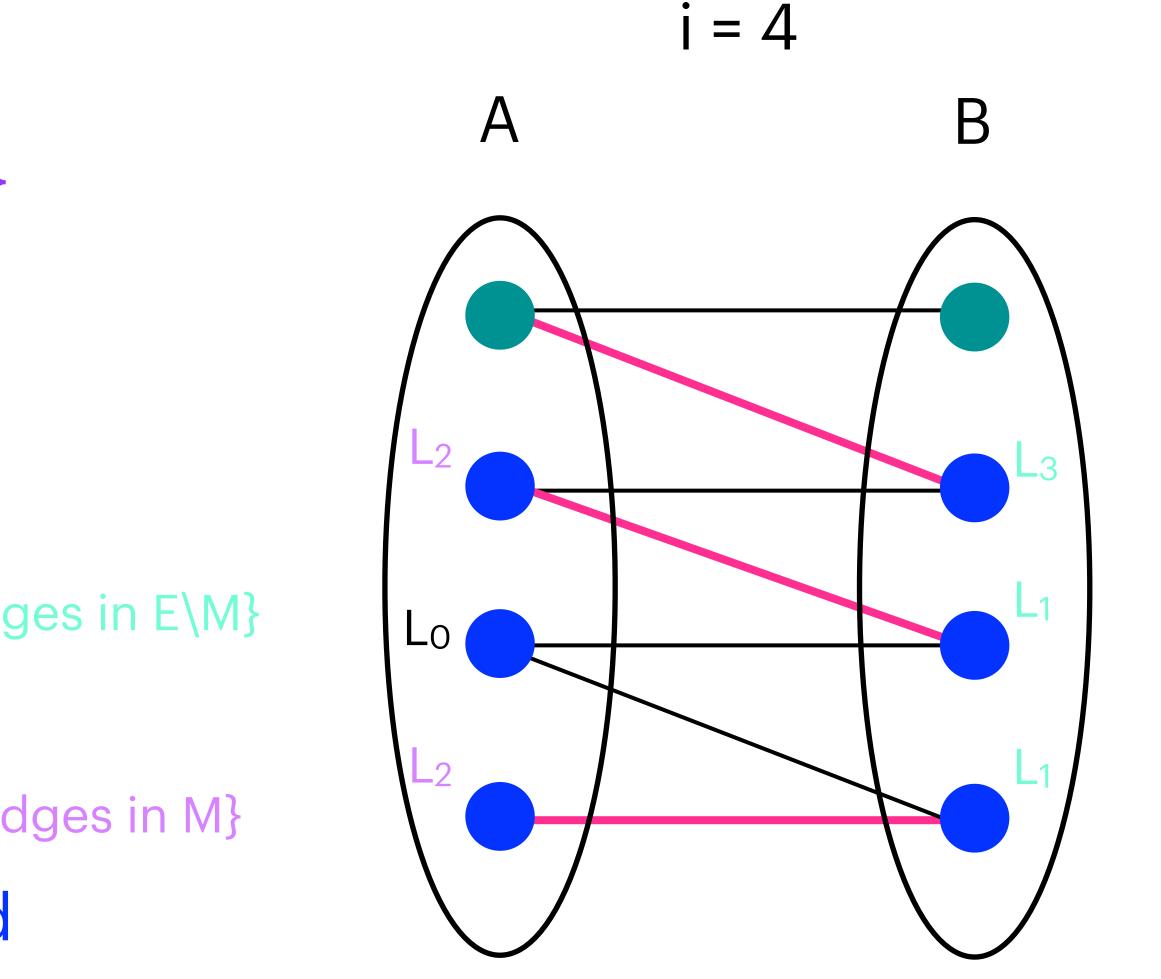
Algorithm : L₀ := {uncovered vertices from A} Mark L₀ as visited for i = 1 to n if i is odd then $L_i := \{$ unvisited neigbours of L_{i-1} via edges in $E \setminus M \}$ if i is even then L_i := {unvisited neighbours of L_{i-1} via edges in M} mark vertices from L_i as visited

Input : A bipartite $G = (A \cup B, E)$, Matching M Output : (shortest) augmenting path (if there is one)



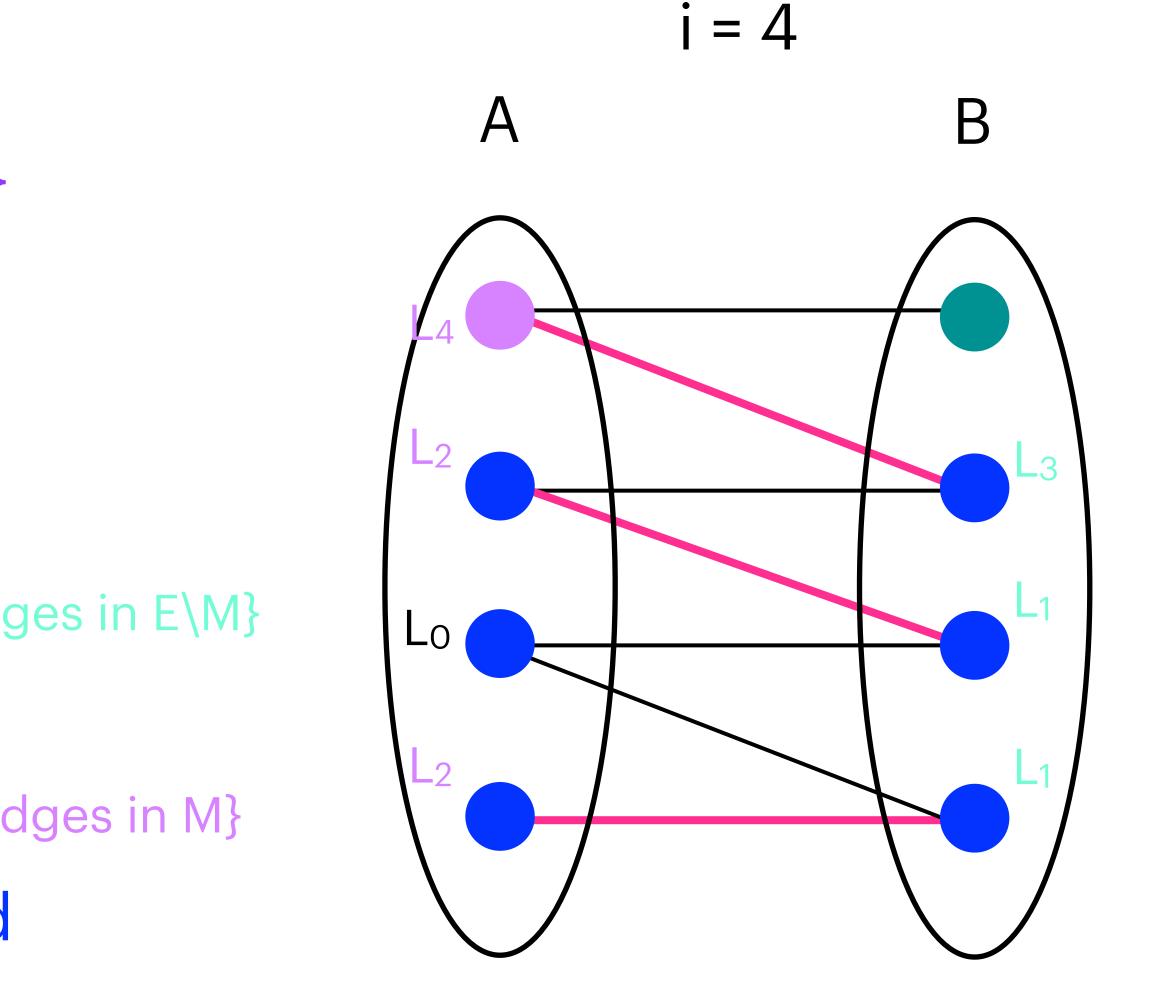
Algorithm : L₀ := {uncovered vertices from A} Mark L₀ as visited for i = 1 to n if i is odd then $L_i := \{$ unvisited neigbours of L_{i-1} via edges in $E \setminus M \}$ if i is even then L_i := {unvisited neighbours of L_{i-1} via edges in M} mark vertices from L_i as visited

Input : A bipartite $G = (A \cup B, E)$, Matching M Output : (shortest) augmenting path (if there is one)



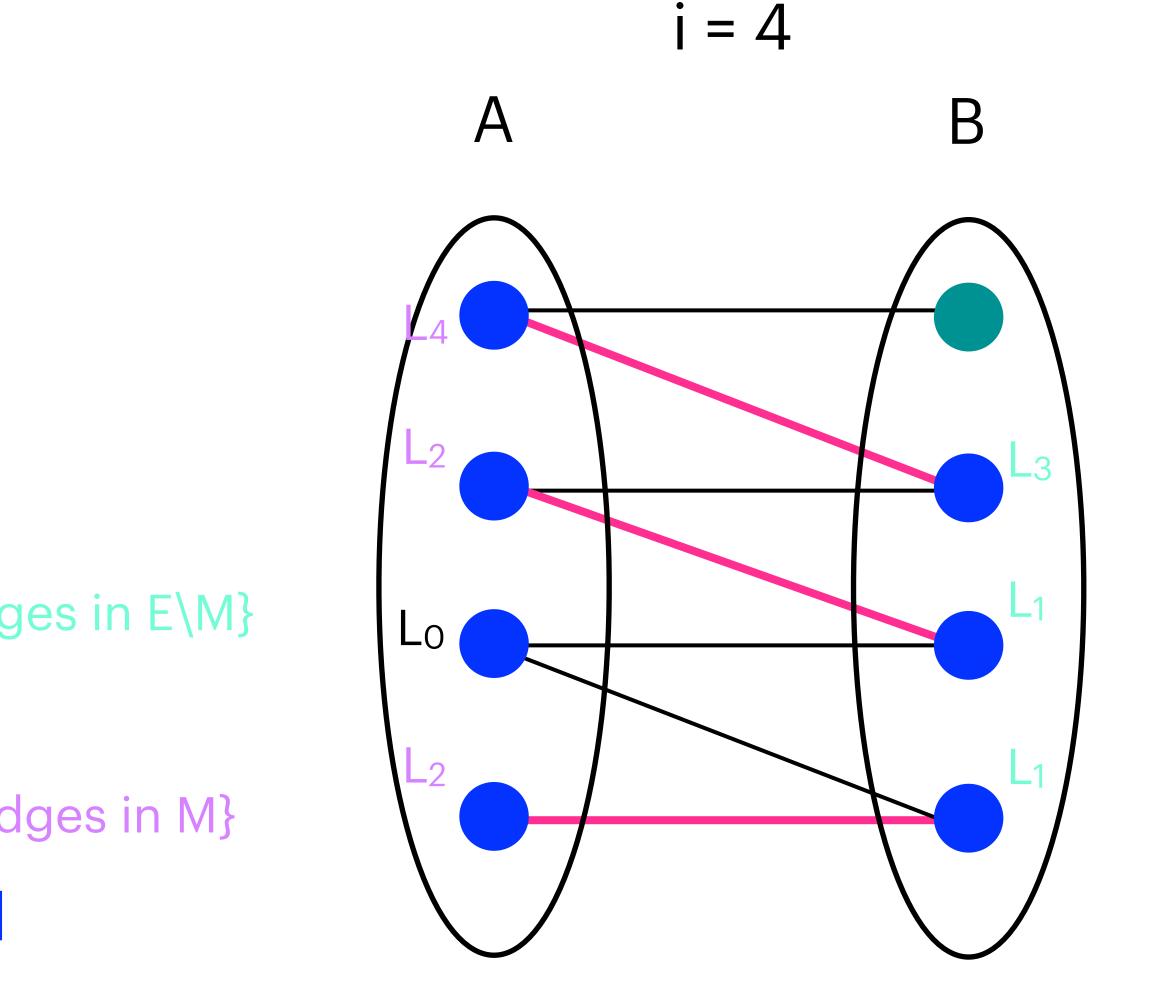
Algorithm : L₀ := {uncovered vertices from A} Mark L₀ as visited for i = 1 to n if i is odd then $L_i := \{$ unvisited neigbours of L_{i-1} via edges in $E \setminus M \}$ if i is even then L_i := {unvisited neighbours of L_{i-1} via edges in M} mark vertices from L_i as visited

Input : A bipartite $G = (A \cup B, E)$, Matching M Output : (shortest) augmenting path (if there is one)



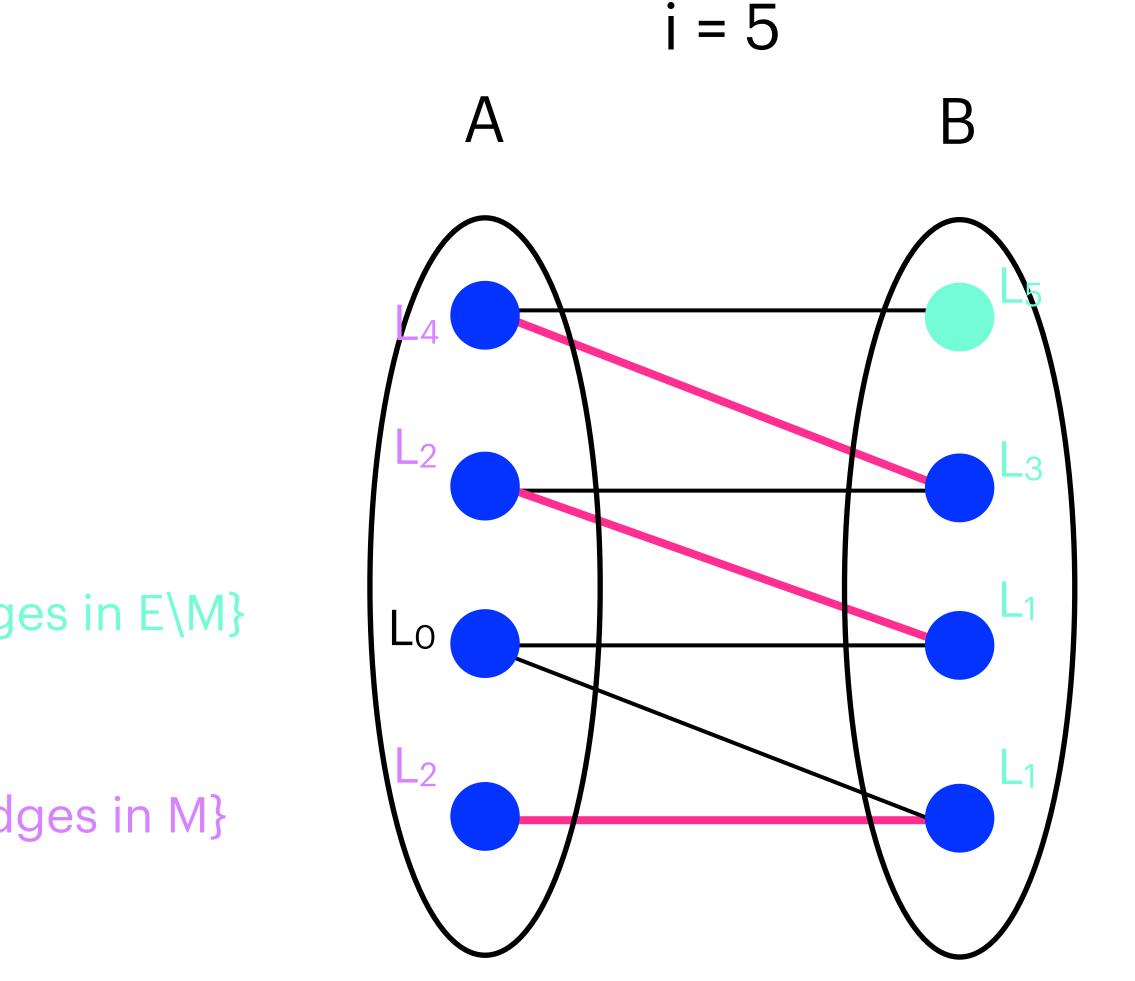
Algorithm : L₀ := {uncovered vertices from A} Mark L₀ as visited for i = 1 to n if i is odd then $L_i := \{$ unvisited neigbours of L_{i-1} via edges in $E \setminus M \}$ if i is even then L_i := {unvisited neighbours of L_{i-1} via edges in M} mark vertices from L_i as visited

Input : A bipartite $G = (A \cup B, E)$, Matching M Output : (shortest) augmenting path (if there is one)



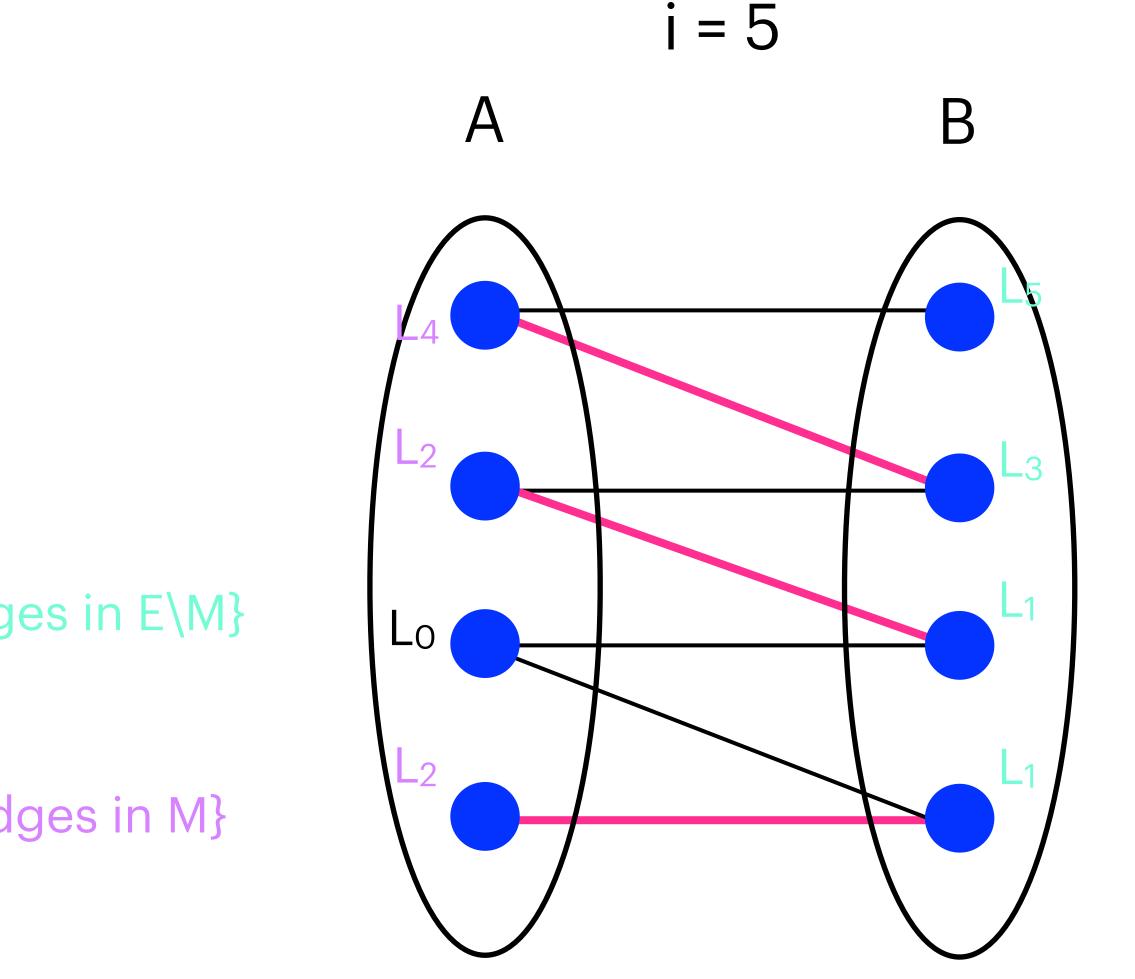
Algorithm : L₀ := {uncovered vertices from A} Mark L₀ as visited for i = 1 to n if i is odd then $L_i := \{$ unvisited neigbours of L_{i-1} via edges in $E \setminus M \}$ if i is even then L_i := {unvisited neighbours of L_{i-1} via edges in M} mark vertices from L_i as visited

Input : A bipartite $G = (A \cup B, E)$, Matching M Output : (shortest) augmenting path (if there is one)



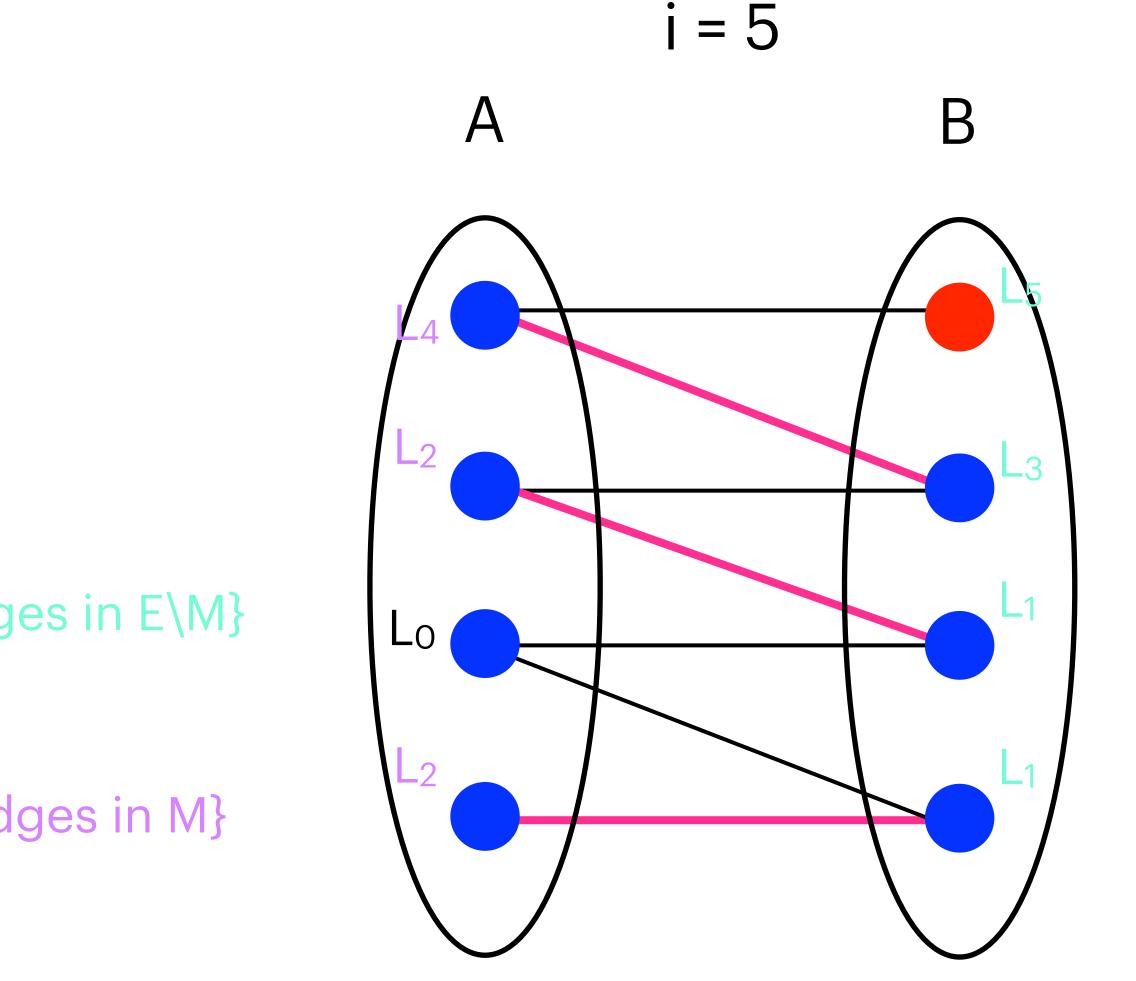
Algorithm : L₀ := {uncovered vertices from A} Mark L₀ as visited for i = 1 to n if i is odd then $L_i := \{$ unvisited neigbours of L_{i-1} via edges in $E \setminus M \}$ if i is even then L_i := {unvisited neighbours of L_{i-1} via edges in M} mark vertices from L_i as visited

Input : A bipartite $G = (A \cup B, E)$, Matching M Output : (shortest) augmenting path (if there is one)



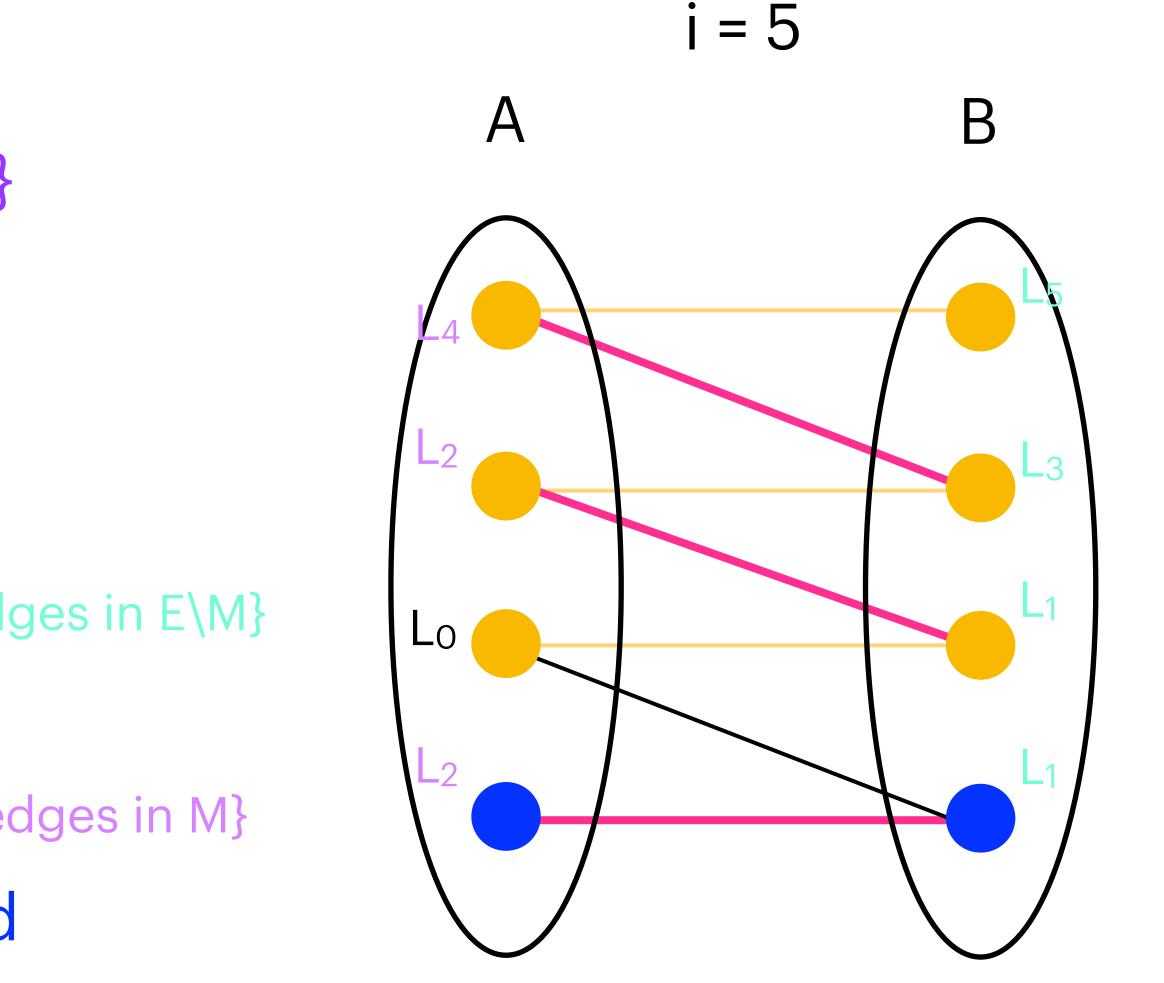
Algorithm : L₀ := {uncovered vertices from A} Mark L₀ as visited for i = 1 to n if i is odd then $L_i := \{$ unvisited neigbours of L_{i-1} via edges in $E \setminus M \}$ if i is even then L_i := {unvisited neighbours of L_{i-1} via edges in M} mark vertices from L_i as visited

Input : A bipartite $G = (A \cup B, E)$, Matching M Output : (shortest) augmenting path (if there is one)



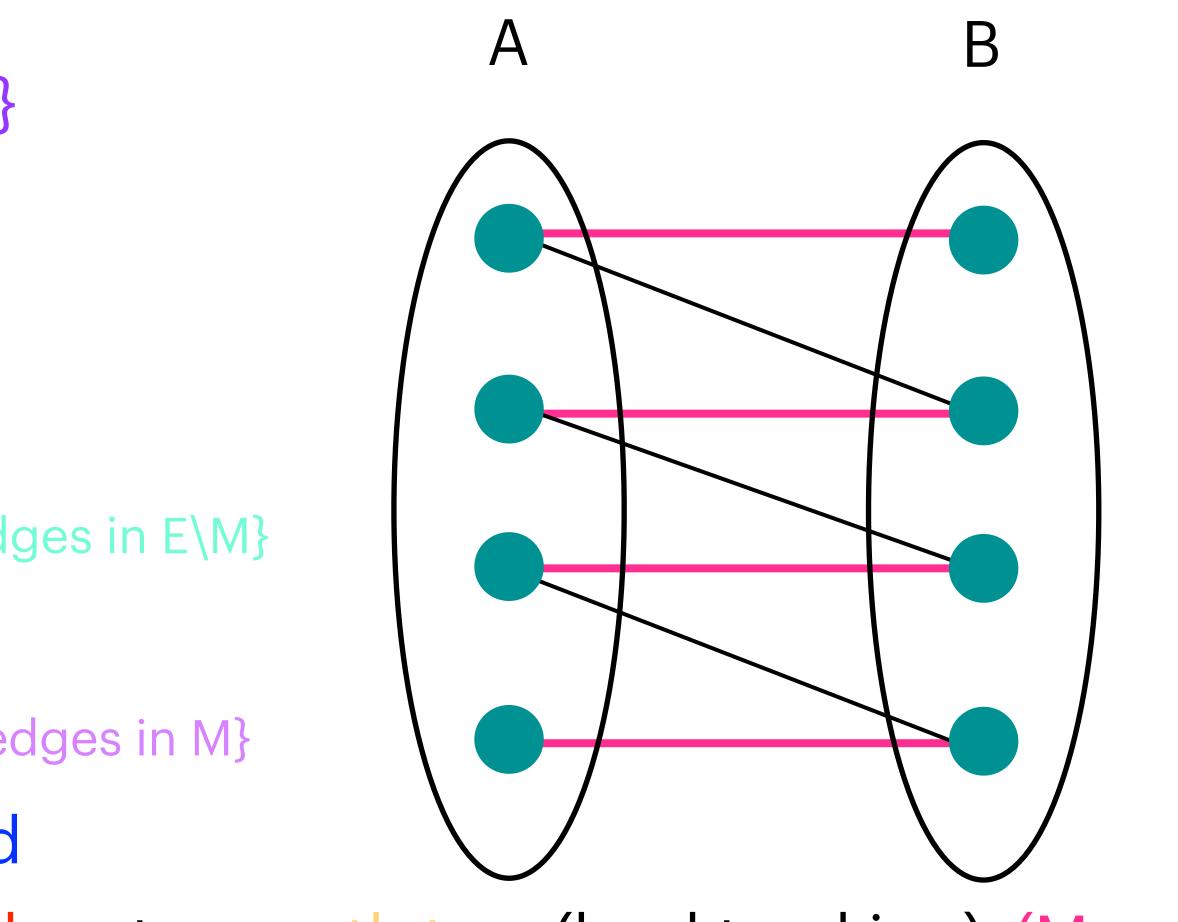
Algorithm : L₀ := {uncovered vertices from A} Mark L₀ as visited for i = 1 to n if i is odd then $L_i := \{$ unvisited neigbours of L_{i-1} via edges in $E \setminus M \}$ if i is even then L_i := {unvisited neighbours of L_{i-1} via edges in M} mark vertices from L_i as visited

Input : A bipartite $G = (A \cup B, E)$, Matching M Output : (shortest) augmenting path (if there is one)



Algorithm : L₀ := {uncovered vertices from A} Mark L₀ as visited for i = 1 to n if i is odd then $L_i := \{$ unvisited neigbours of L_{i-1} via edges in $E \setminus M \}$ if i is even then L_i := {unvisited neighbours of L_{i-1} via edges in M} mark vertices from L_i as visited

Input : A bipartite $G = (A \cup B, E)$, Matching M Output : (shortest) augmenting path (if there is one)



Matching

Improvement : Hopcroft Karp Algorithm

Algorithm :

Hopcroft-Karp :

Start with $M = \emptyset$ while \exists augmenting path P with BFS

 $M = M \oplus P$

return M

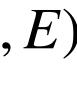
- Start with $M = \emptyset$
- while \mathbb{Z} augmenting path P
 - k := length of the shortest augmenting path
 - find more disjoint augmenting paths of length k until we have a inclusion-maximal set S of those paths

 - for all P in S :
 - $M = M \oplus P$

Input : A bipartite $G = (A \cup B, E)$

Output : Maximum Matching M

 $O(|V|^{1/2} (|V|+|E|))$



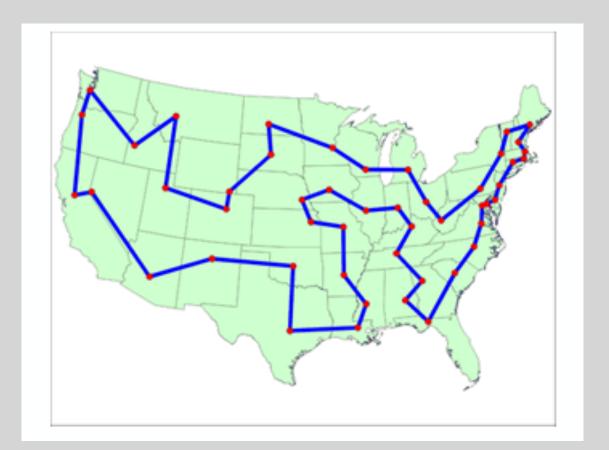
Let's take a break

Metric TSP: 2-Approximation Problem Description

- A complete Graph K_n of n vertices Given :
 - Distances *l* inbetween evel

To find : • Hamiltonian Cycle C s.t.

where OPT =



ry 2 vertex
$$l: \binom{[n]}{2} \to R$$

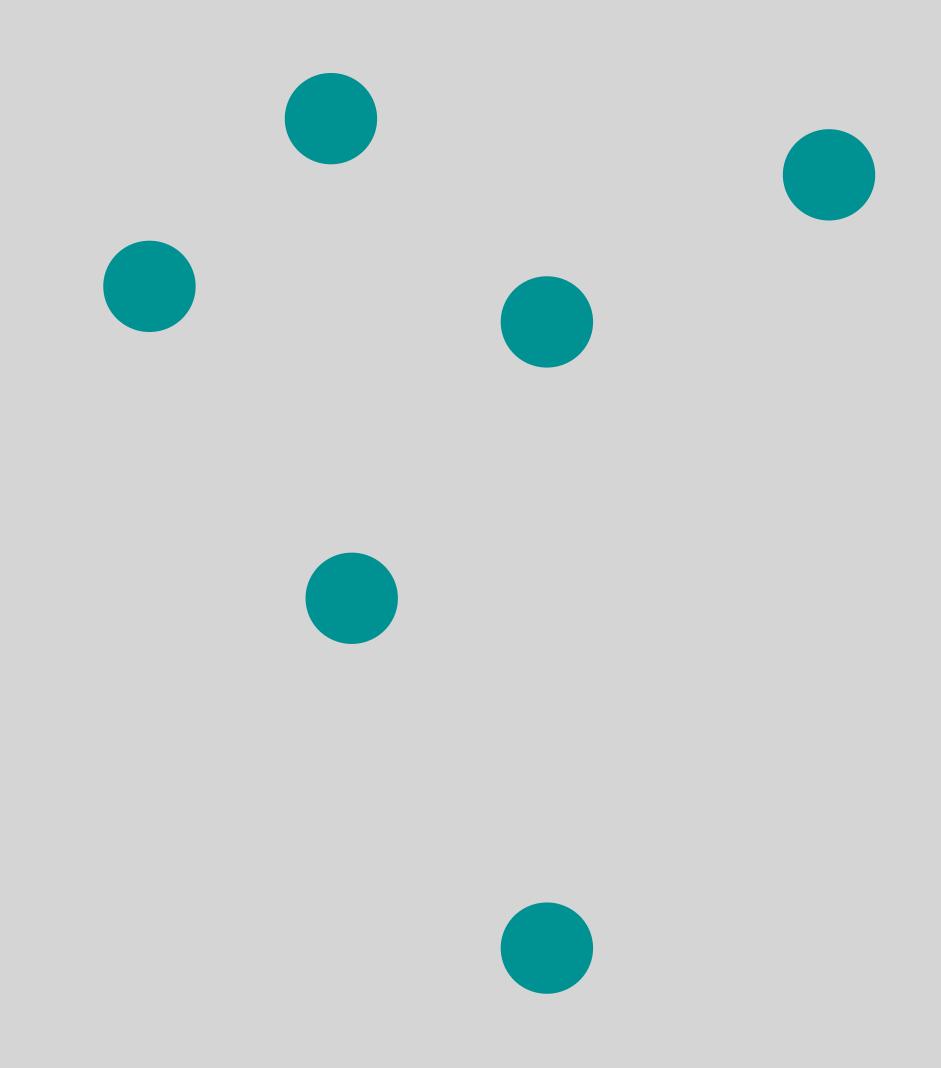
l(e)

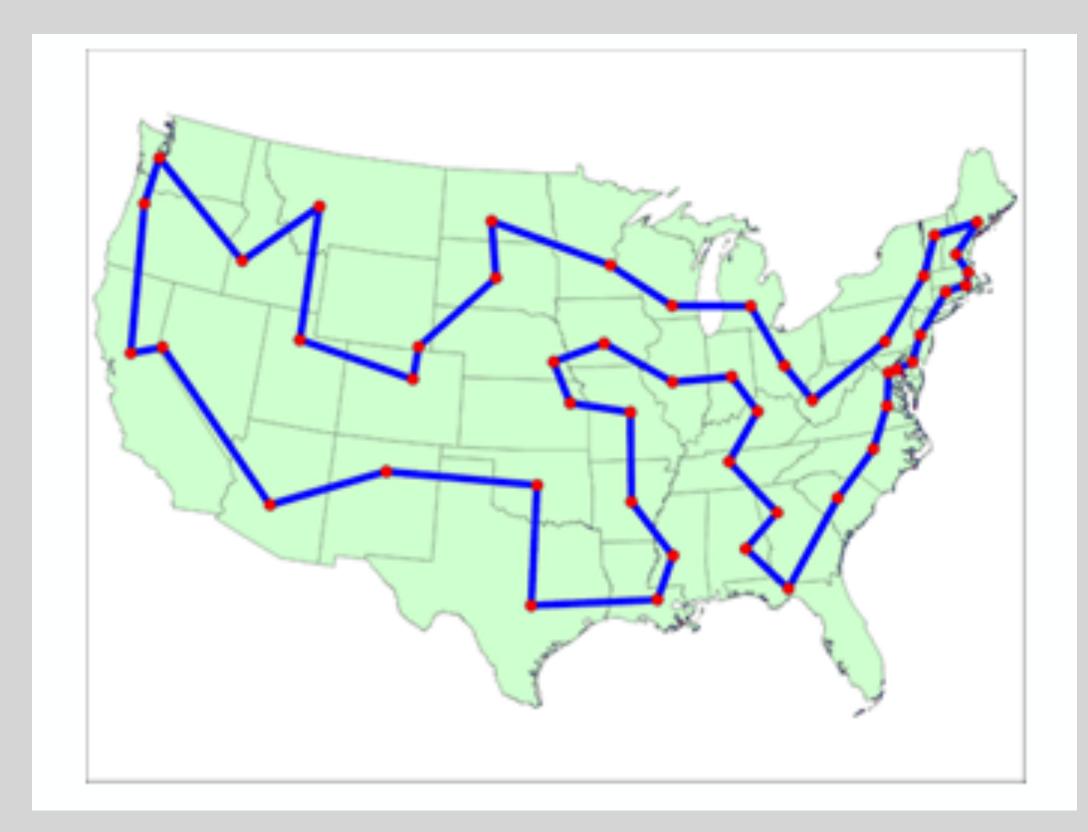
• *l* satisfies the triangle inequality

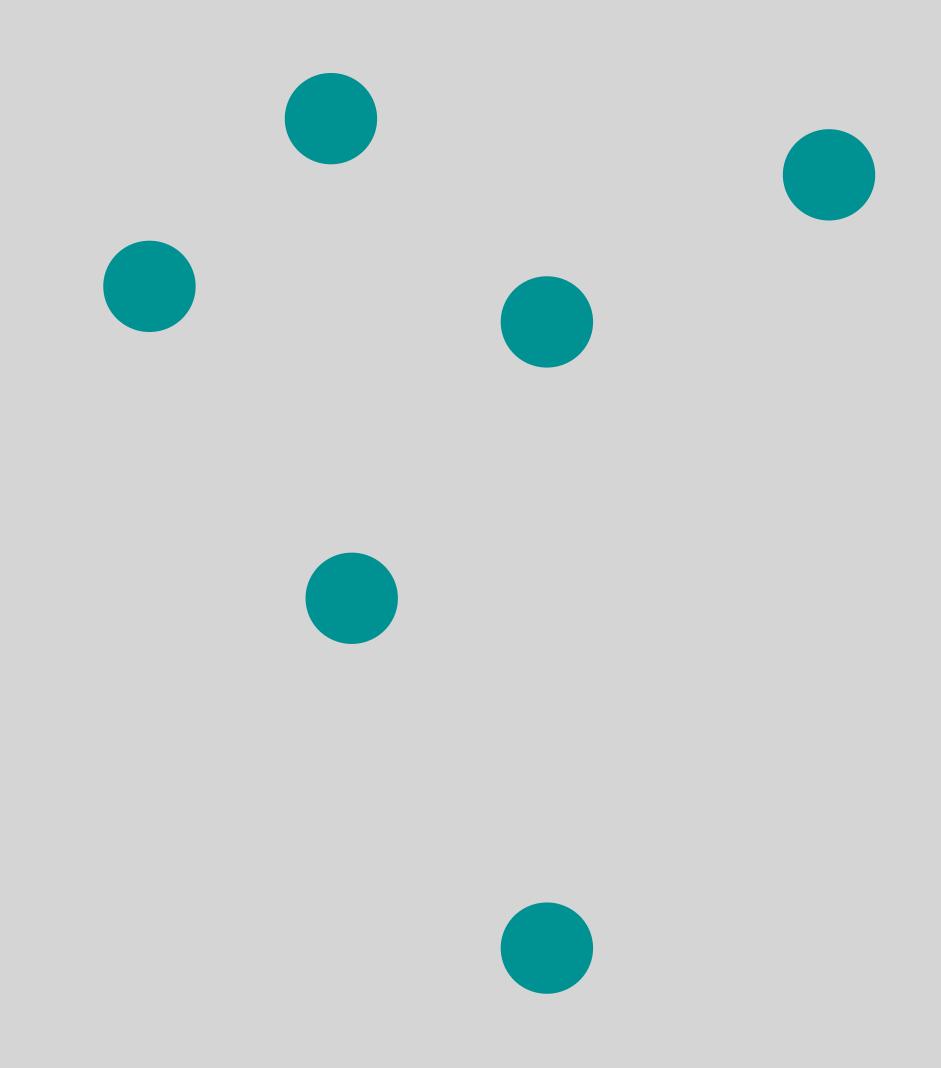
 $l(x,z) \le l(x,y) + l(y,z)$

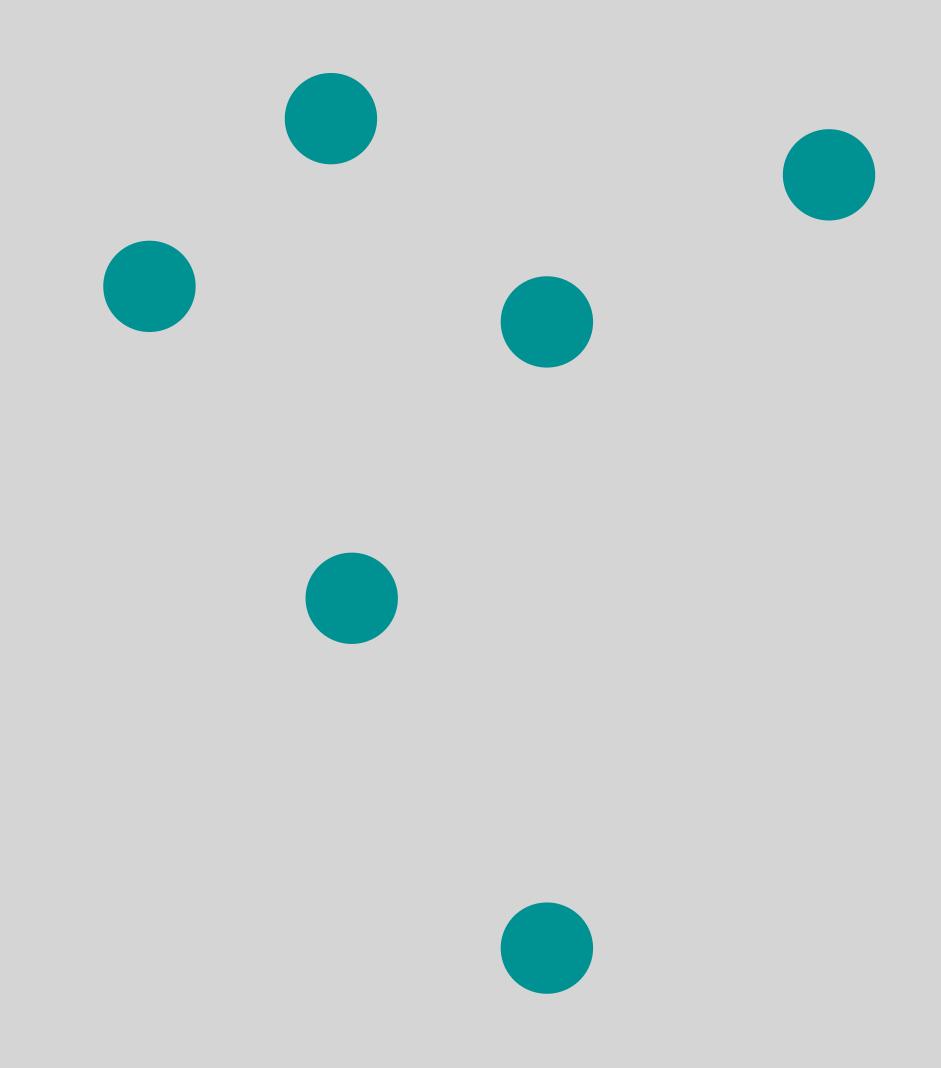
$l(C) \leq 2 l(OPT)$

min H : Hamiltonian Cycle $e \in E(H)$

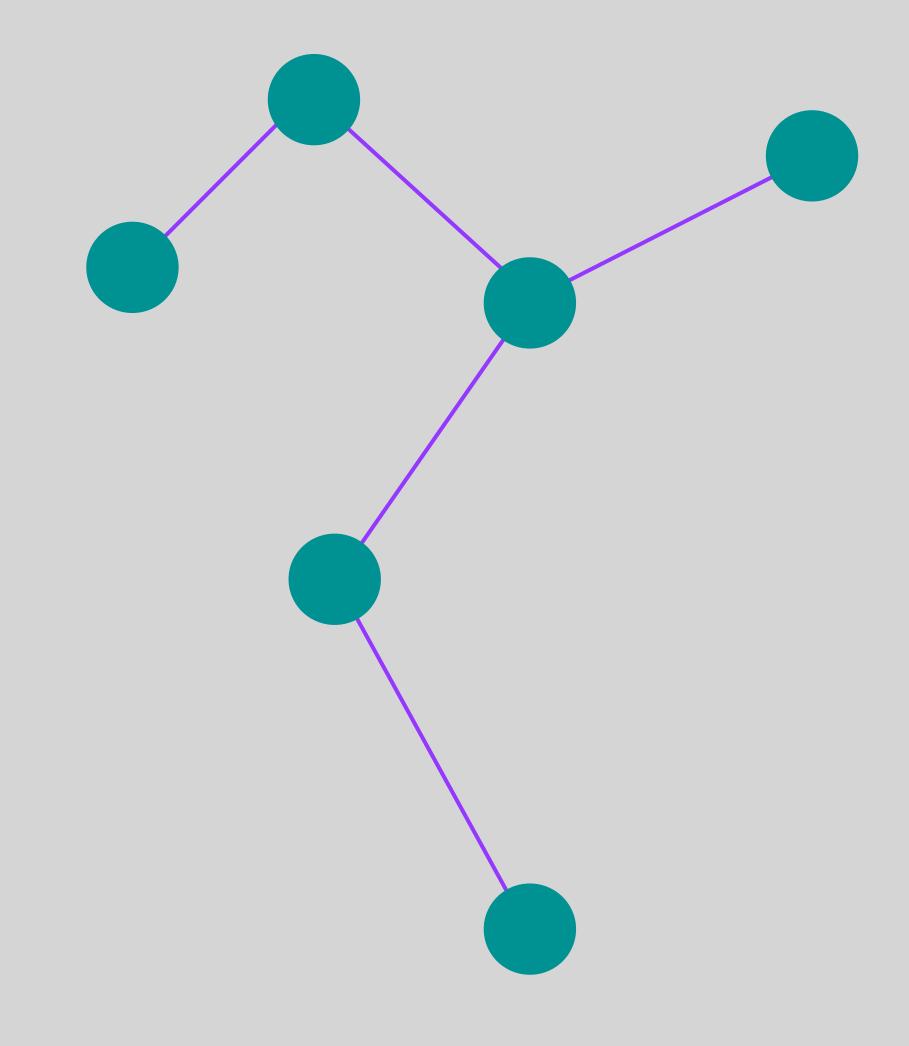




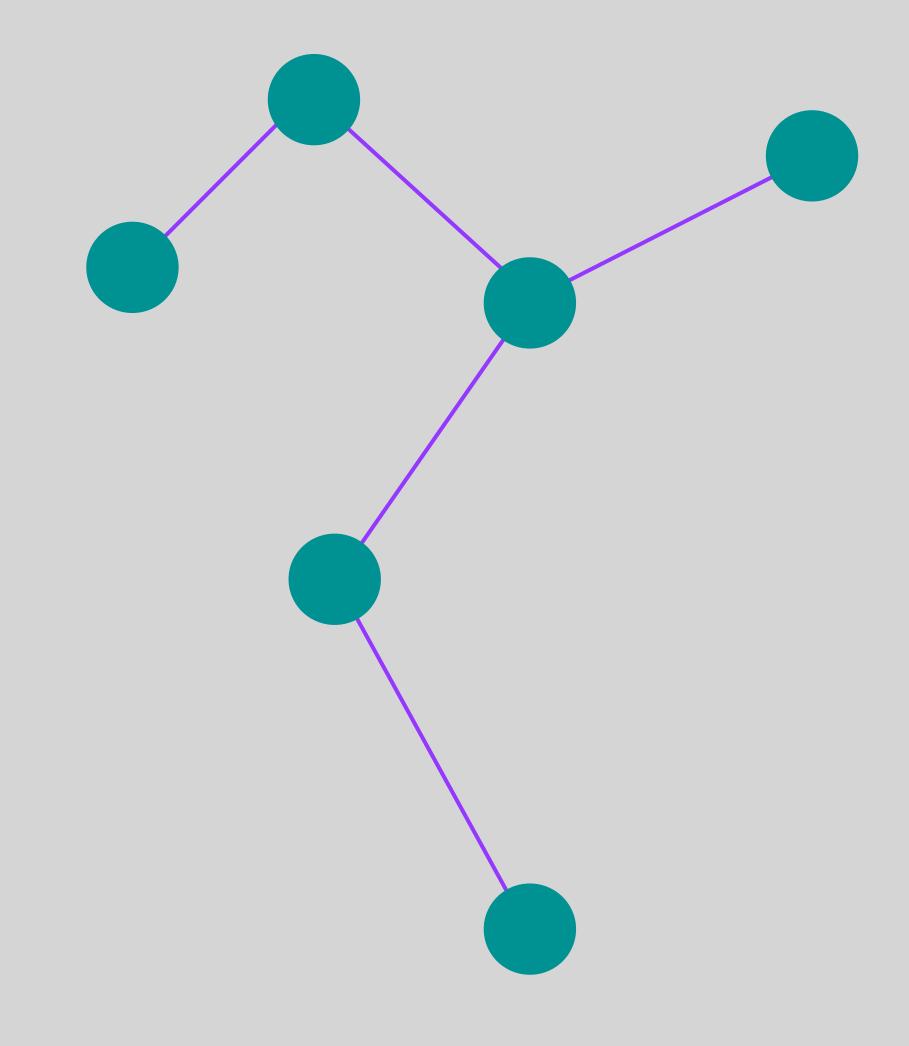




1. Find the MST T

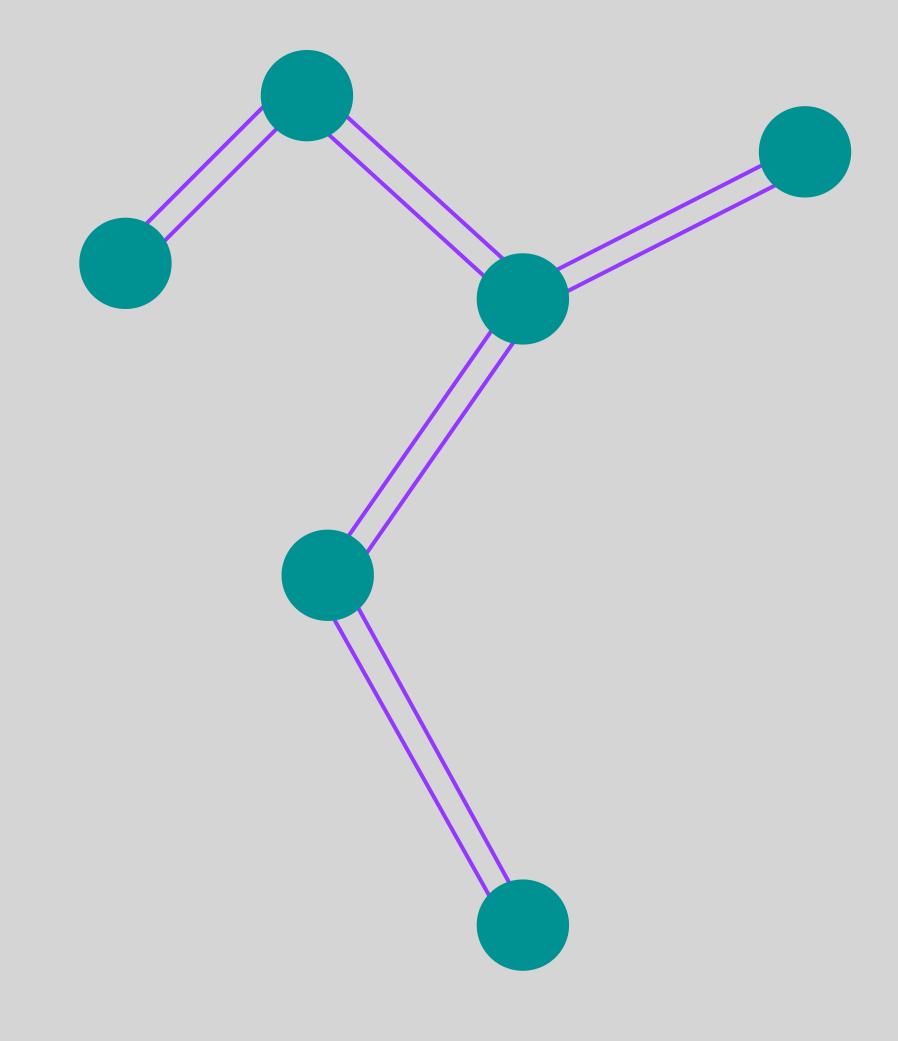


1. Find the MST T



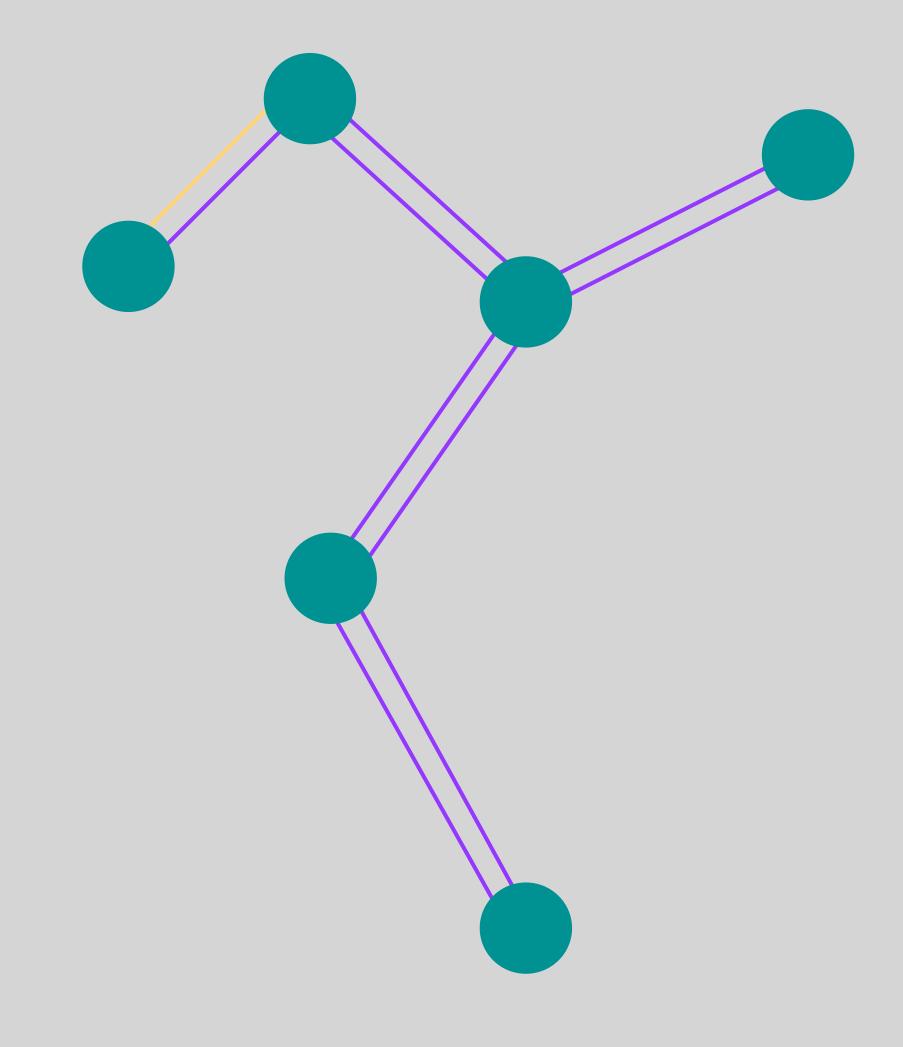
1. Find the MST T

2. Duplicate all edges of T



1. Find the MST T

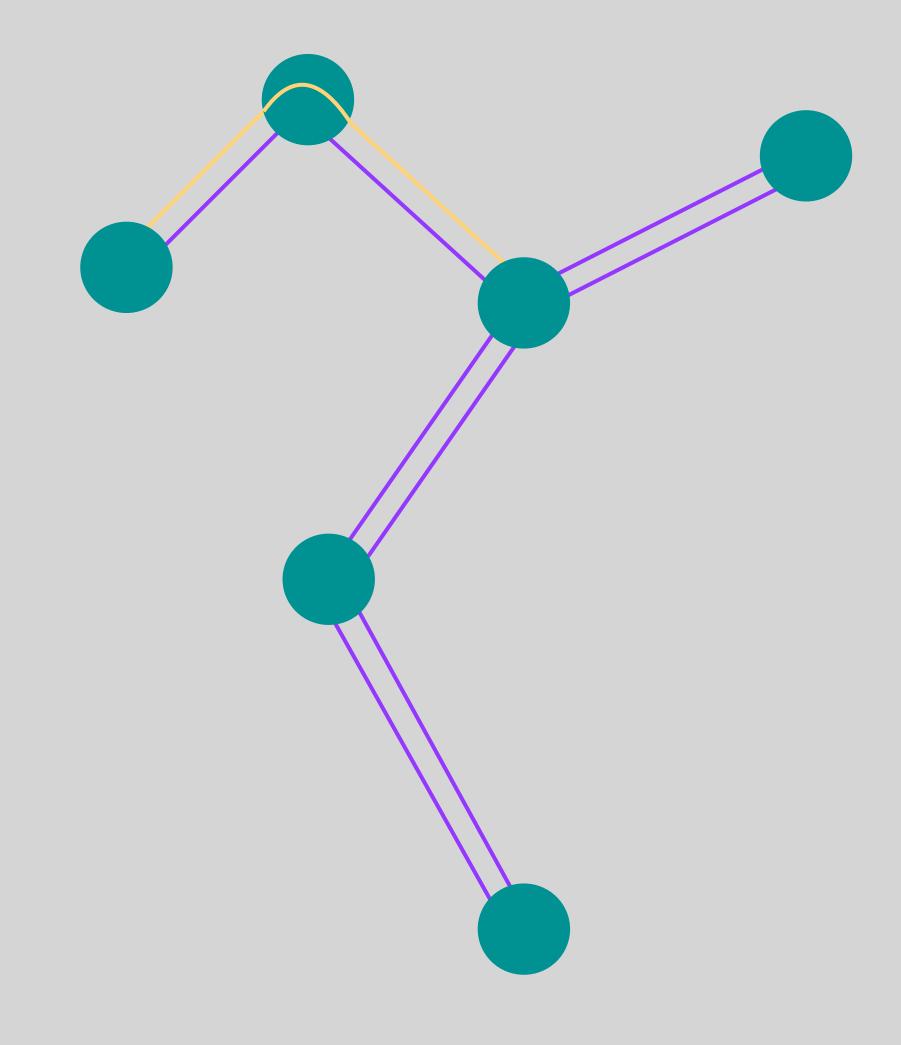
2. Duplicate all edges of T



1. Find the MST T

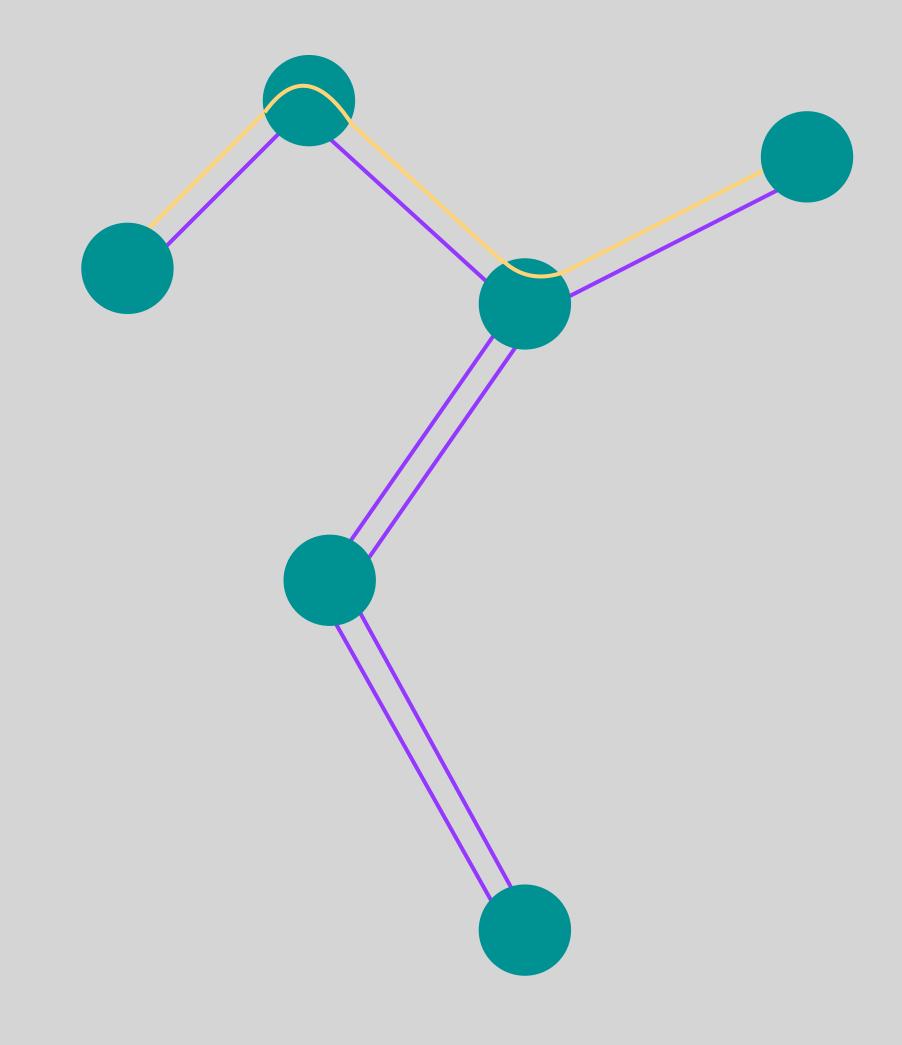
2. Duplicate all edges of T

3. Find Eulerian Tour



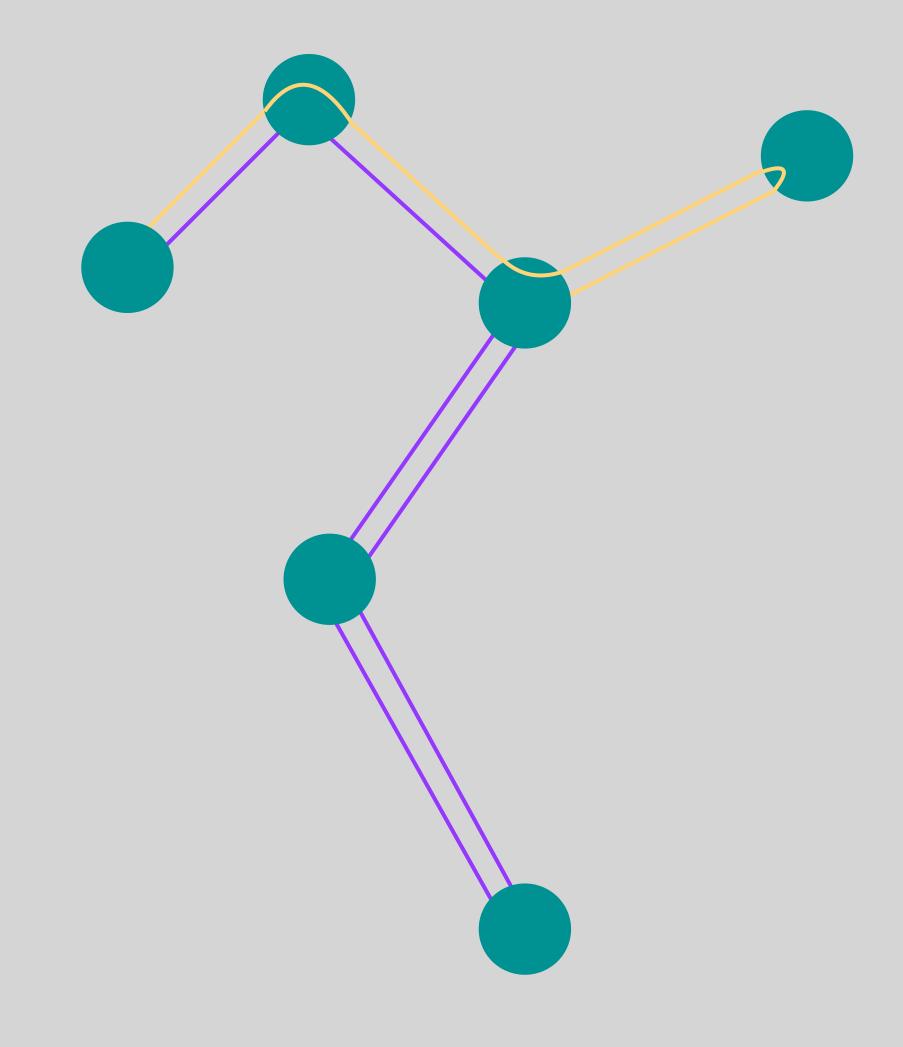
1. Find the MST T

2. Duplicate all edges of T



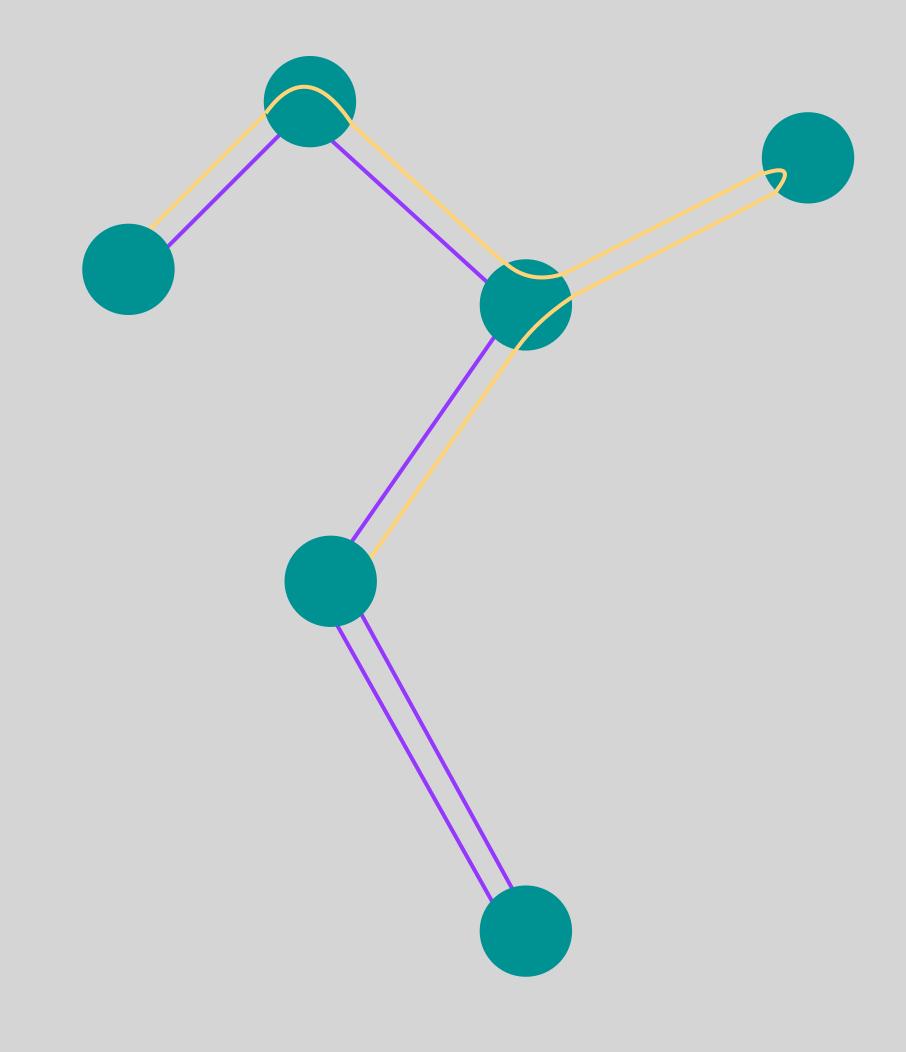
1. Find the MST T

2. Duplicate all edges of T



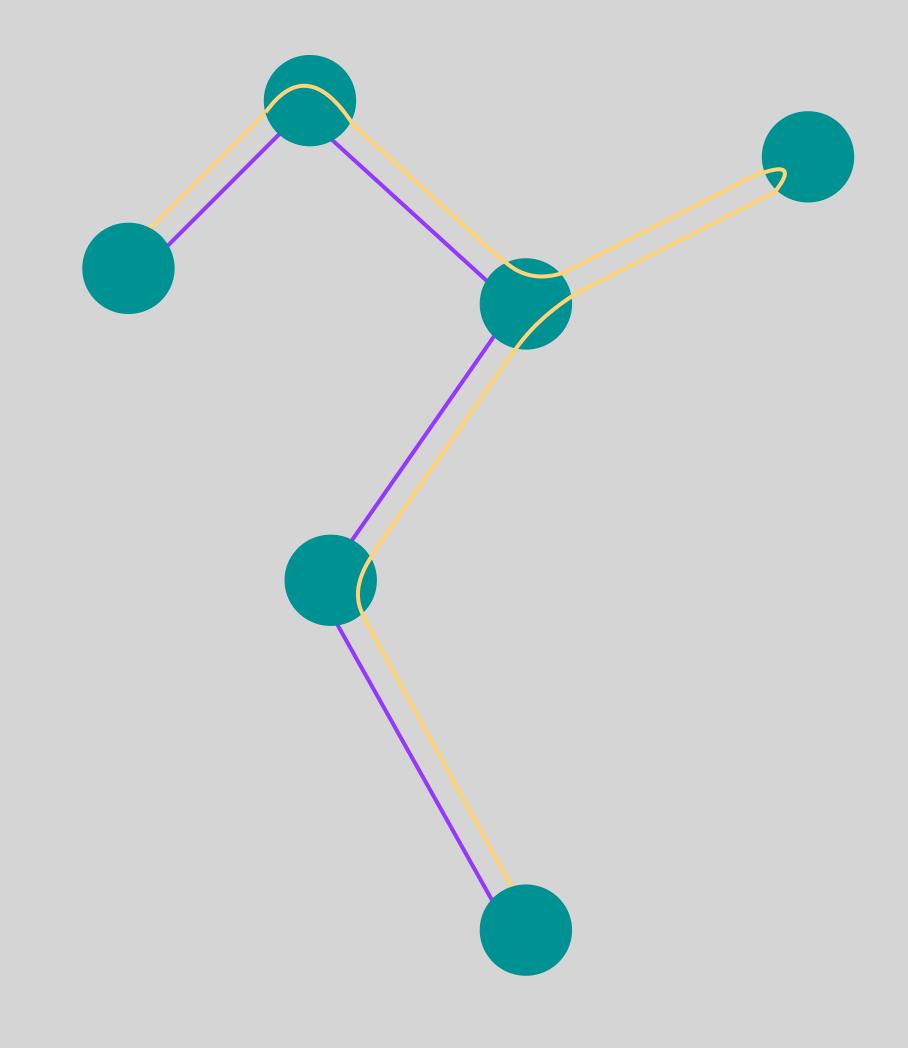
1. Find the MST T

2. Duplicate all edges of T



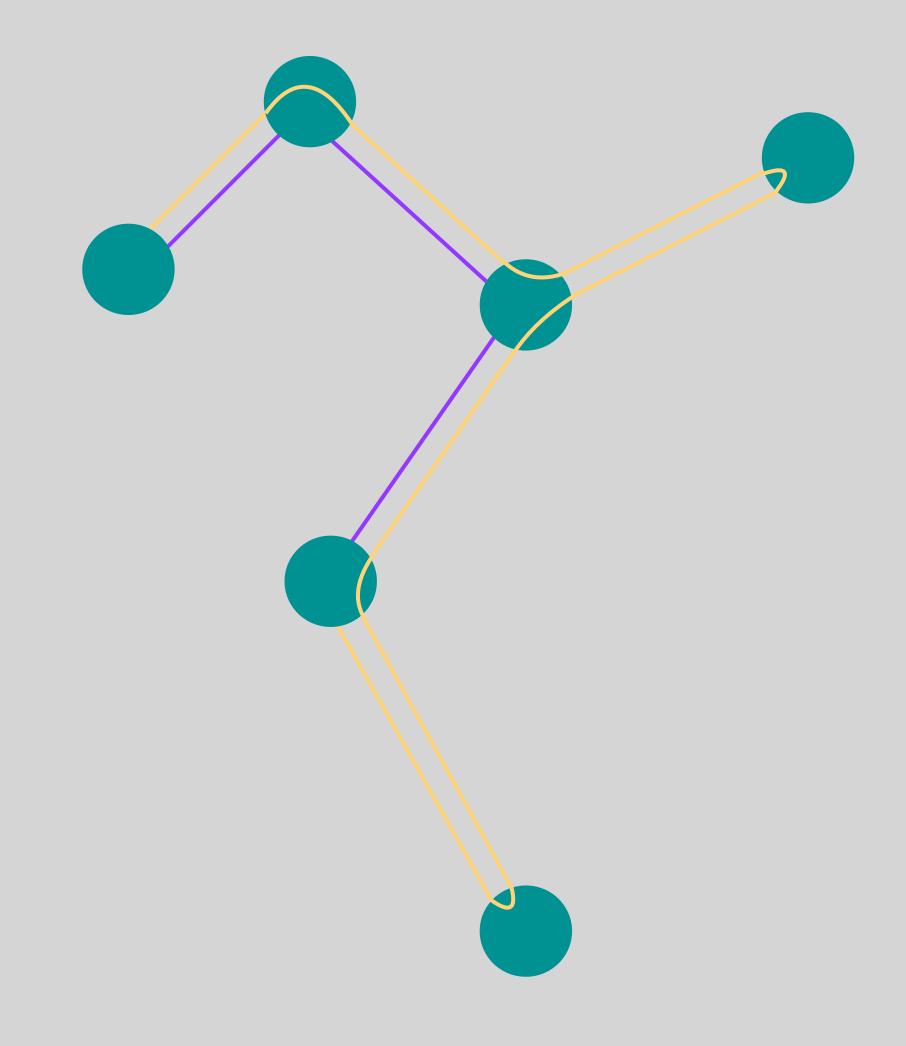
1. Find the MST T

2. Duplicate all edges of T



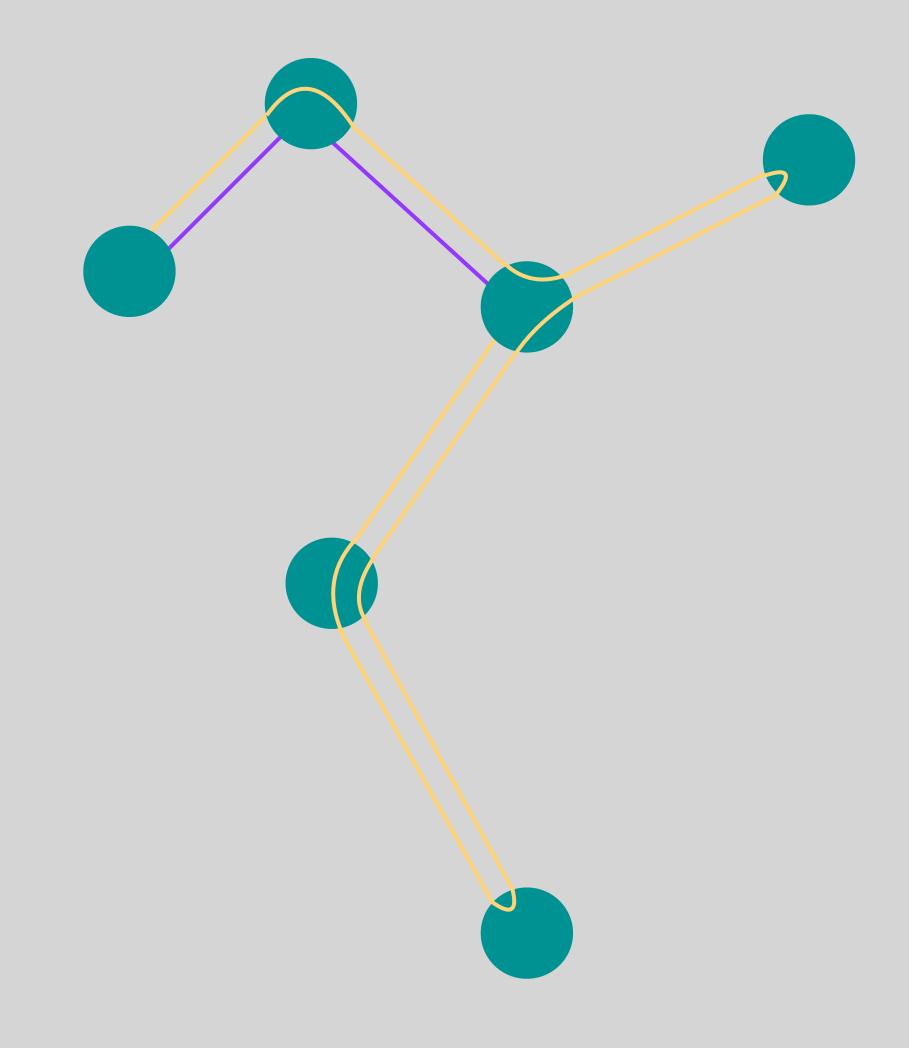
1. Find the MST T

2. Duplicate all edges of T



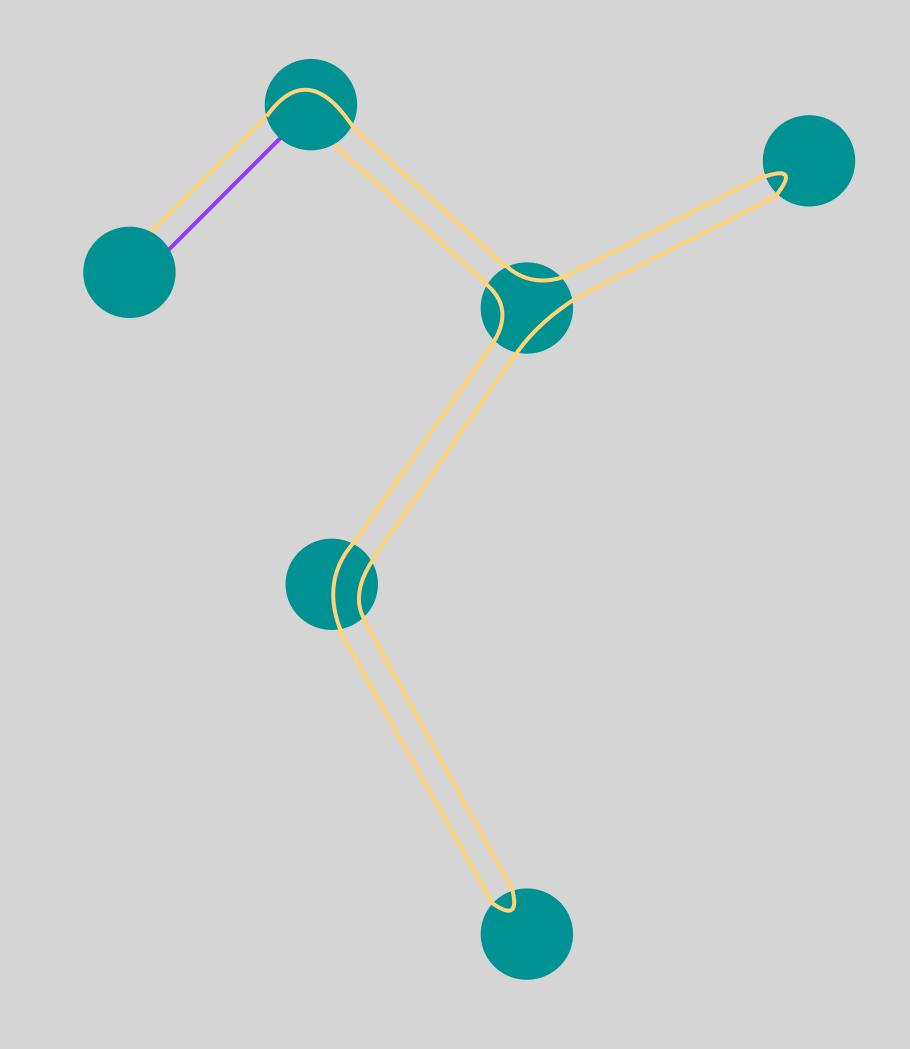
1. Find the MST T

2. Duplicate all edges of T



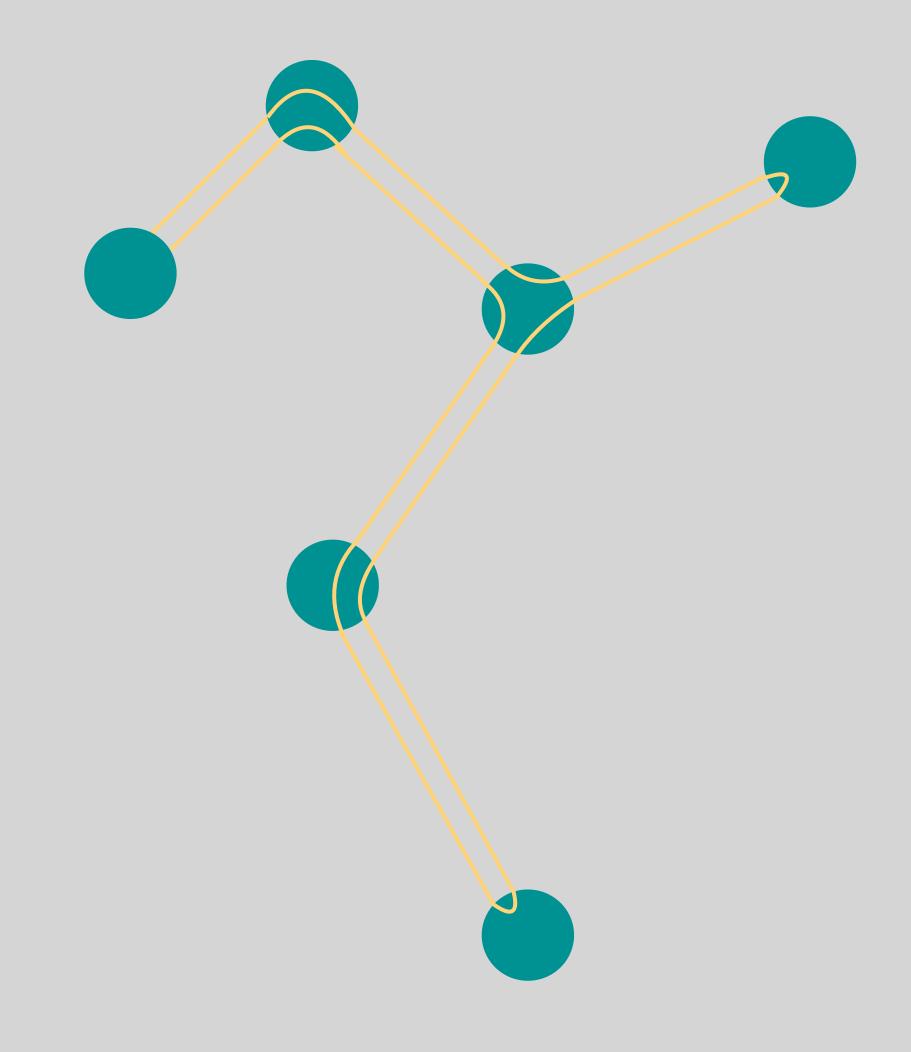
1. Find the MST T

2. Duplicate all edges of T



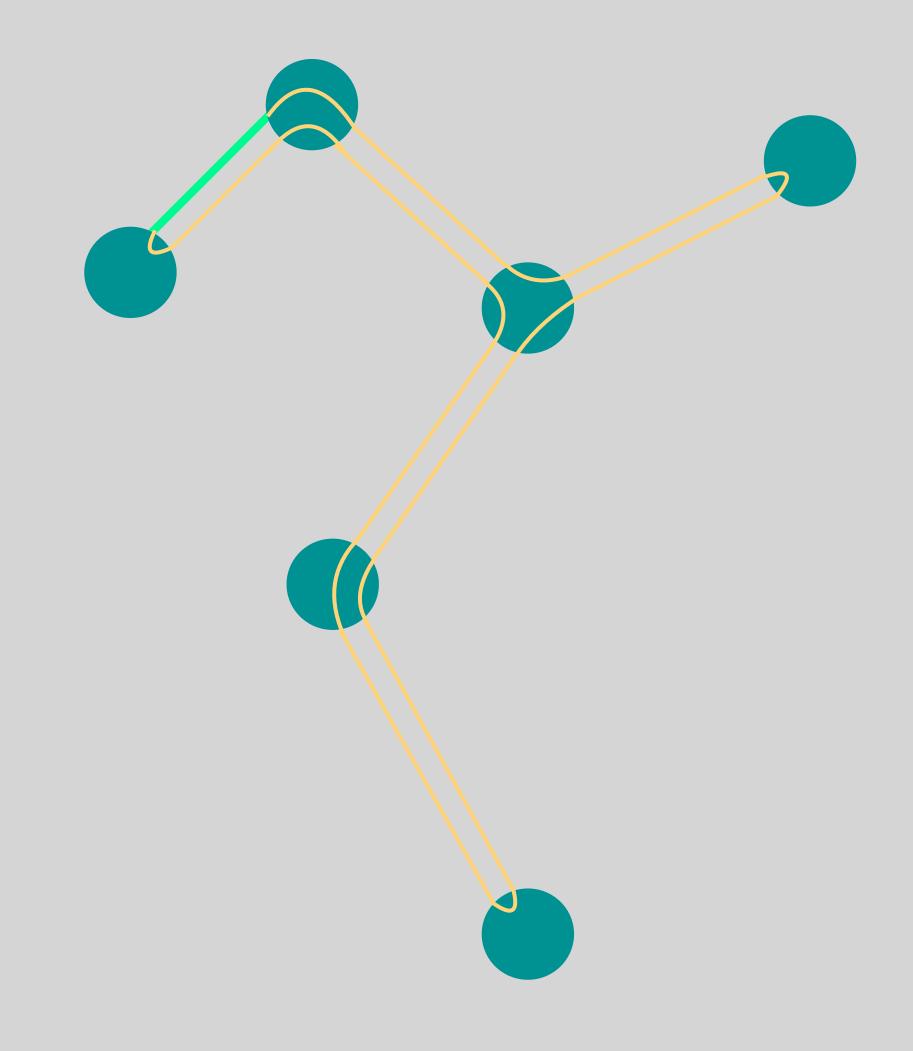
1. Find the MST T

2. Duplicate all edges of T



1. Find the MST T

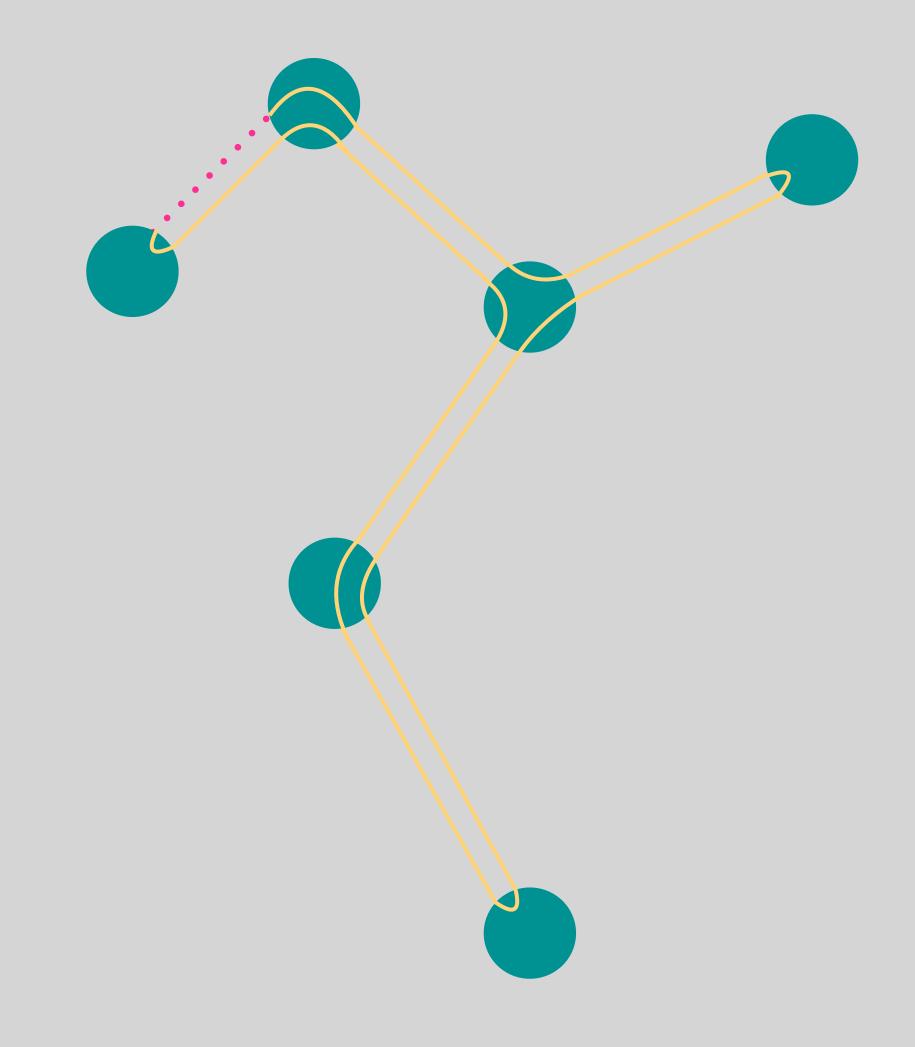
2. Duplicate all edges of T



1. Find the MST T

2. Duplicate all edges of T

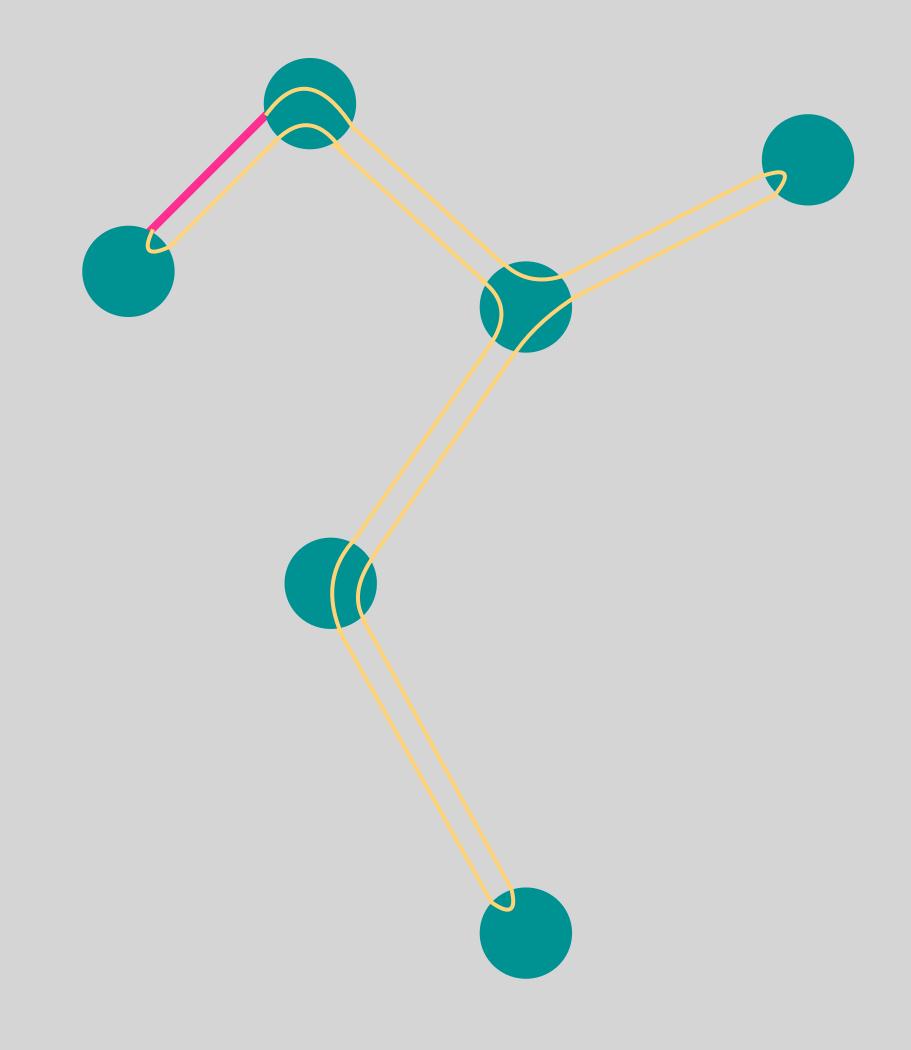
3. Find Eulerian Tour



1. Find the MST T

2. Duplicate all edges of T

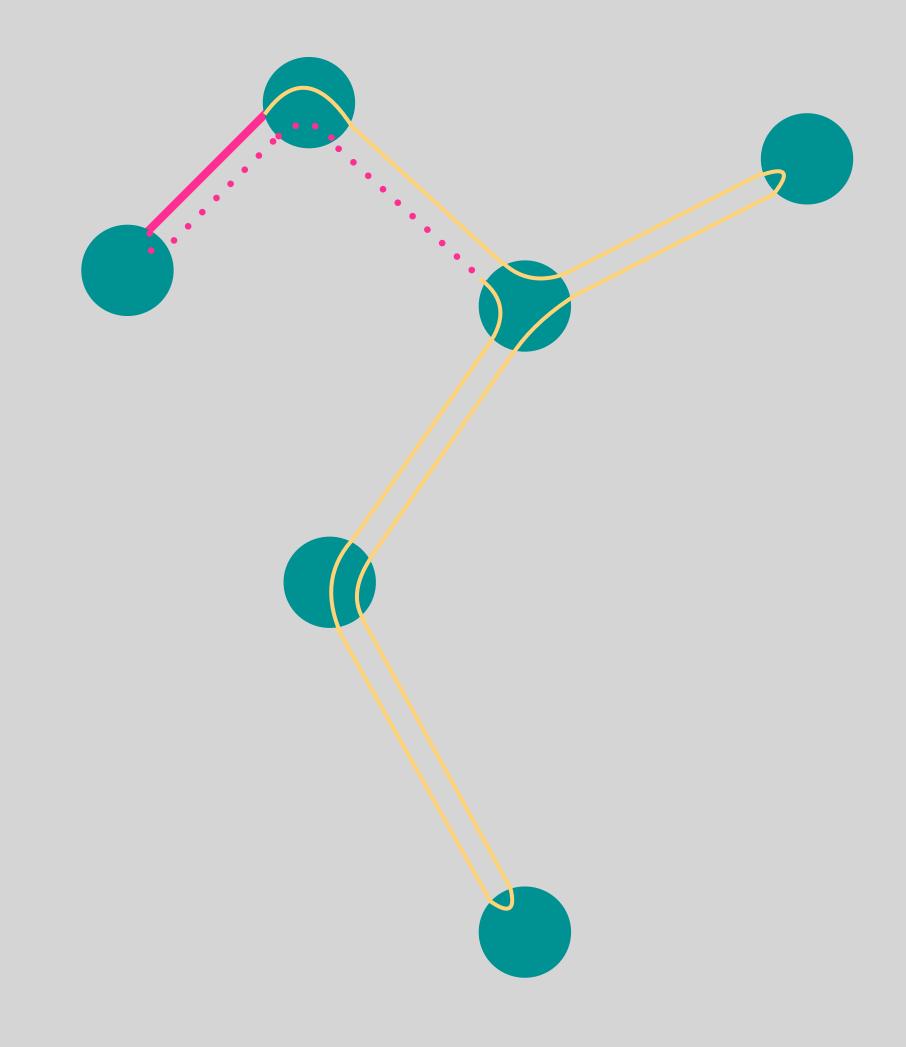
3. Find Eulerian Tour



1. Find the MST T

2. Duplicate all edges of T

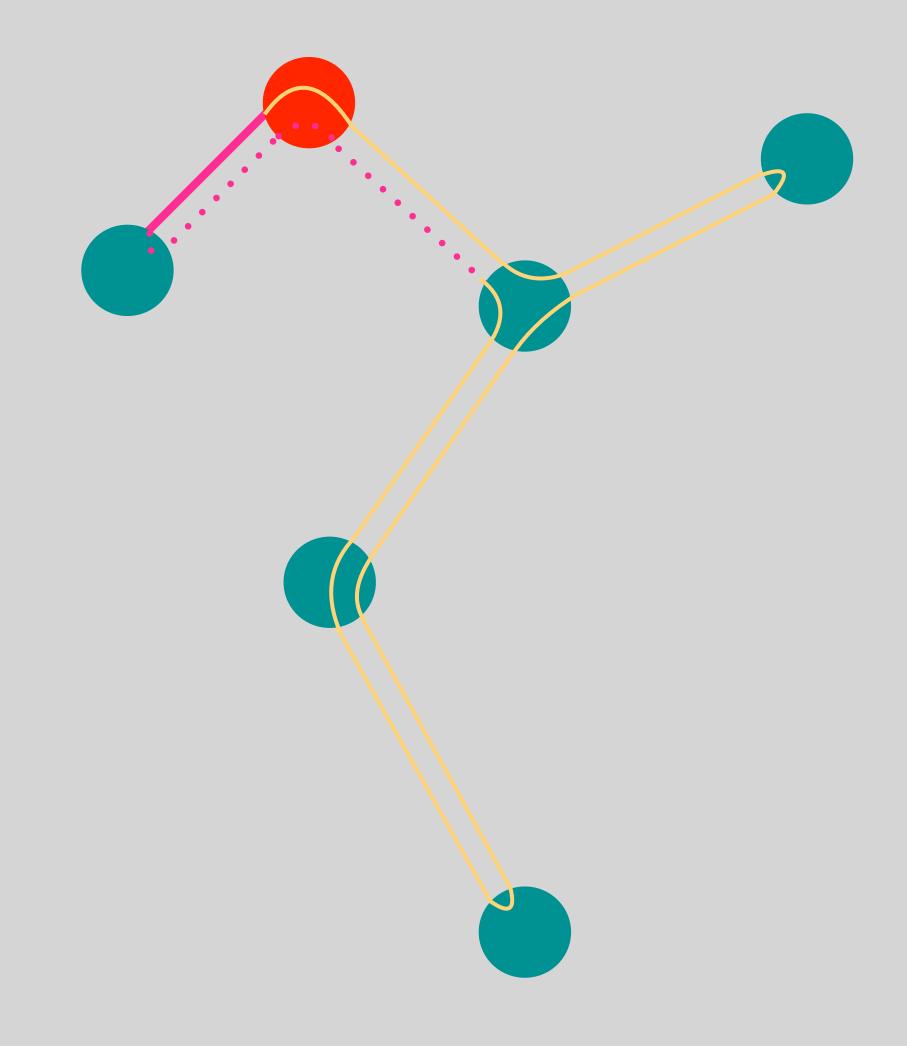
3. Find Eulerian Tour



1. Find the MST T

2. Duplicate all edges of T

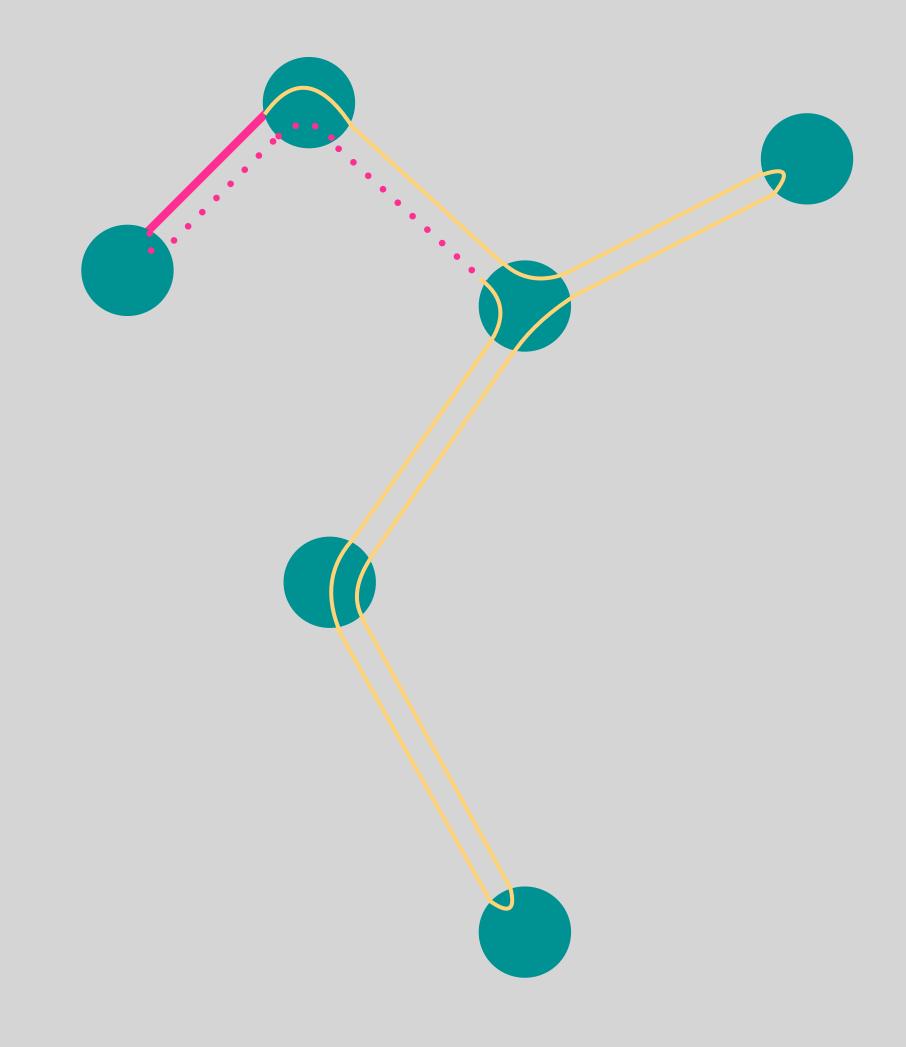
3. Find Eulerian Tour



1. Find the MST T

2. Duplicate all edges of T

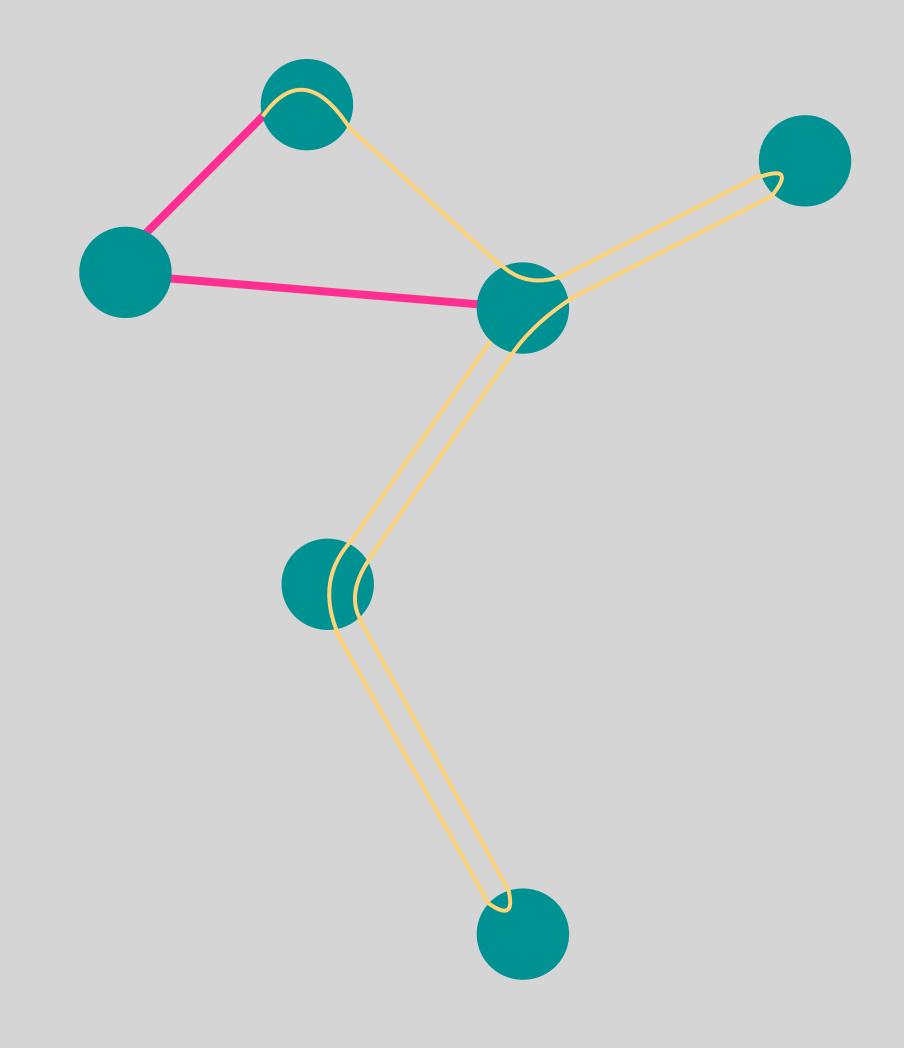
3. Find Eulerian Tour



1. Find the MST T

2. Duplicate all edges of T

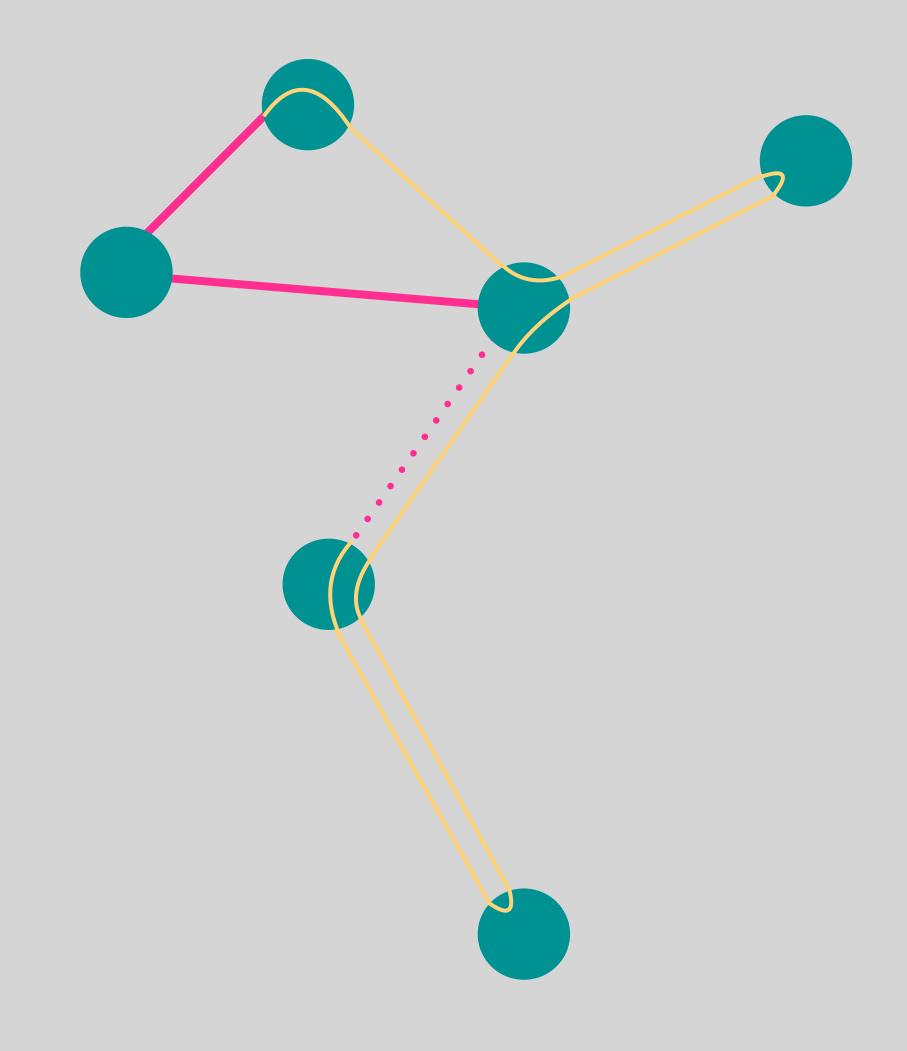
3. Find Eulerian Tour



1. Find the MST T

2. Duplicate all edges of T

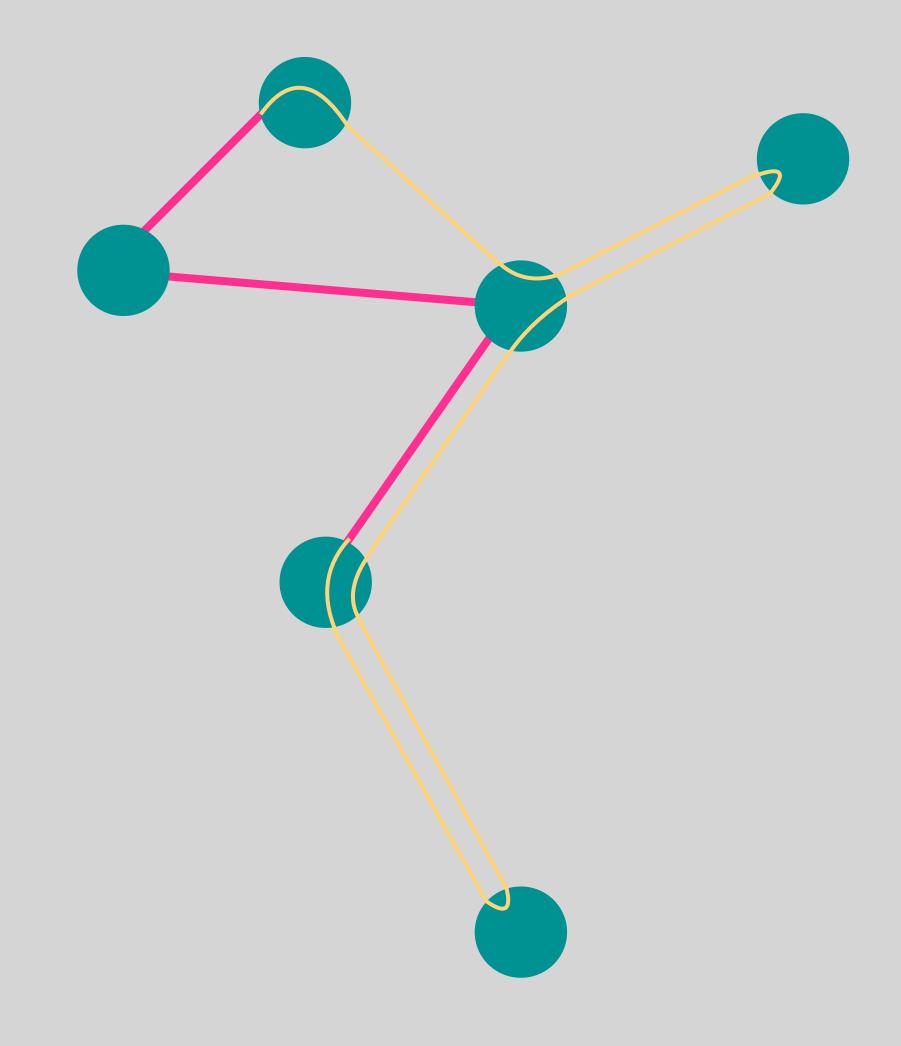
3. Find Eulerian Tour



1. Find the MST T

2. Duplicate all edges of T

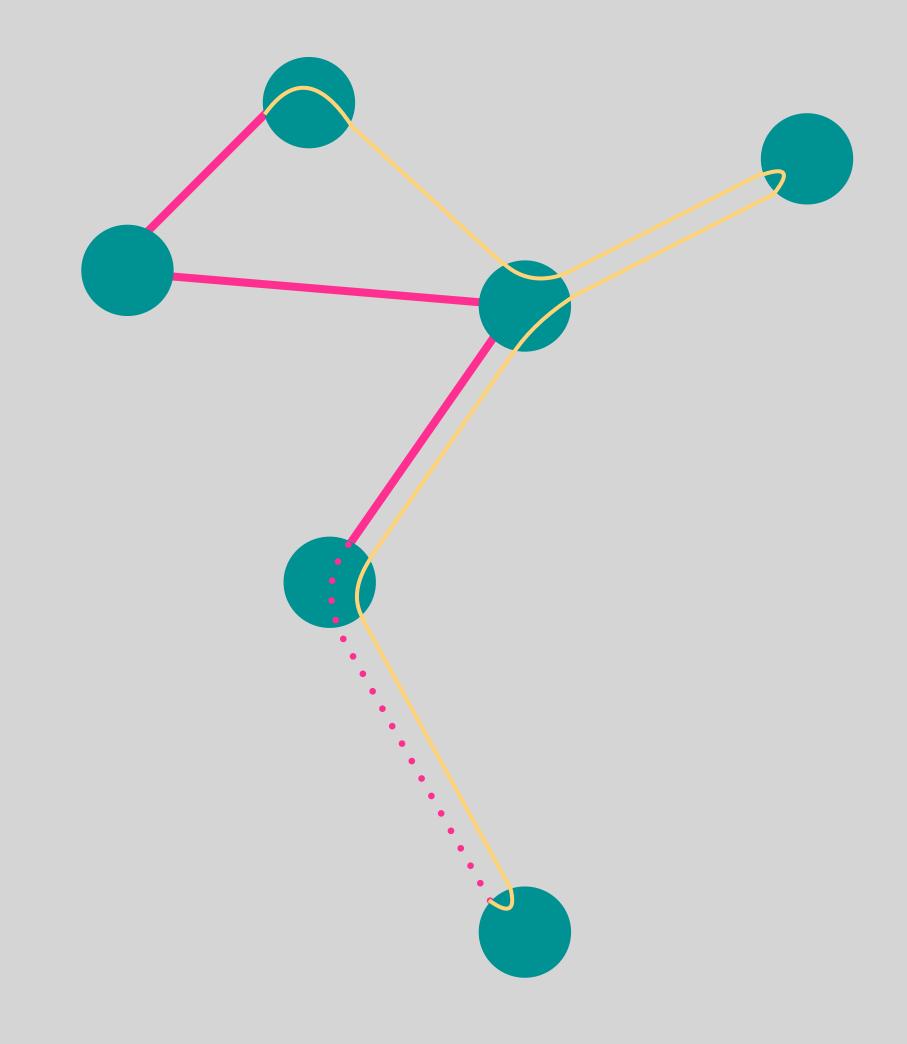
3. Find Eulerian Tour



1. Find the MST T

2. Duplicate all edges of T

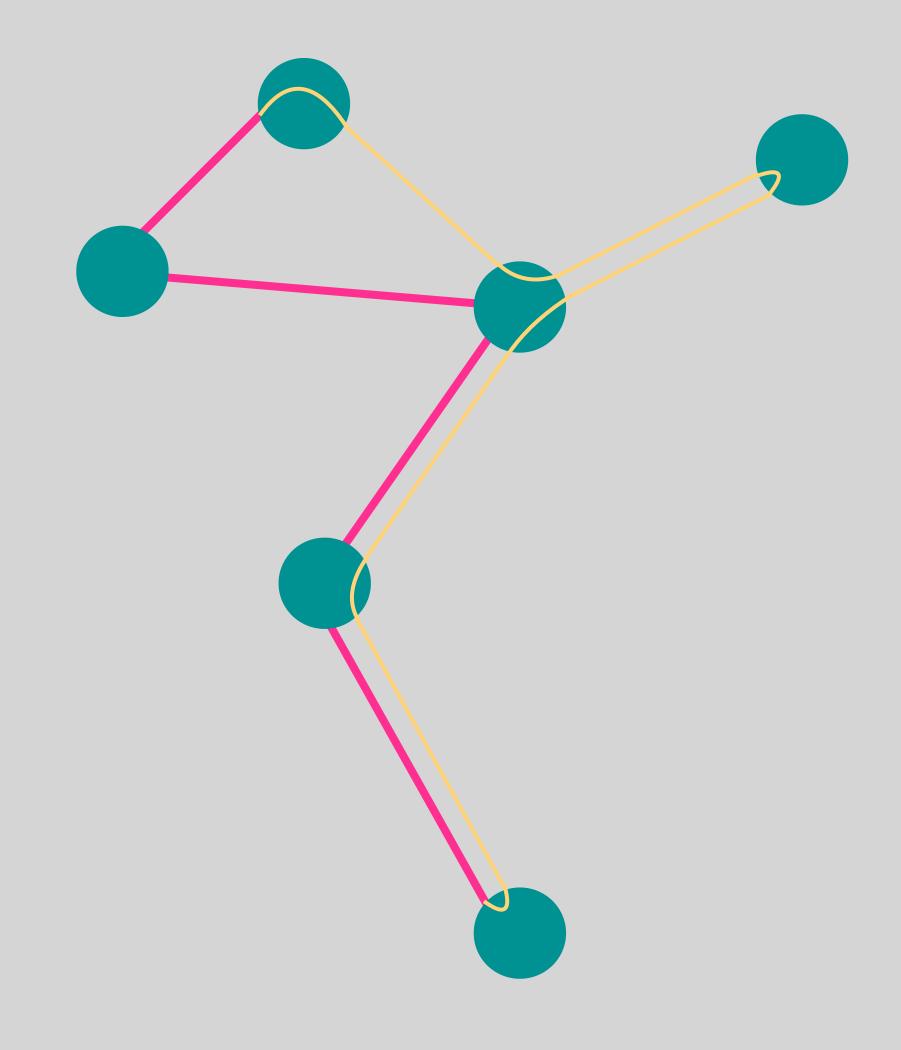
3. Find Eulerian Tour



1. Find the MST T

2. Duplicate all edges of T

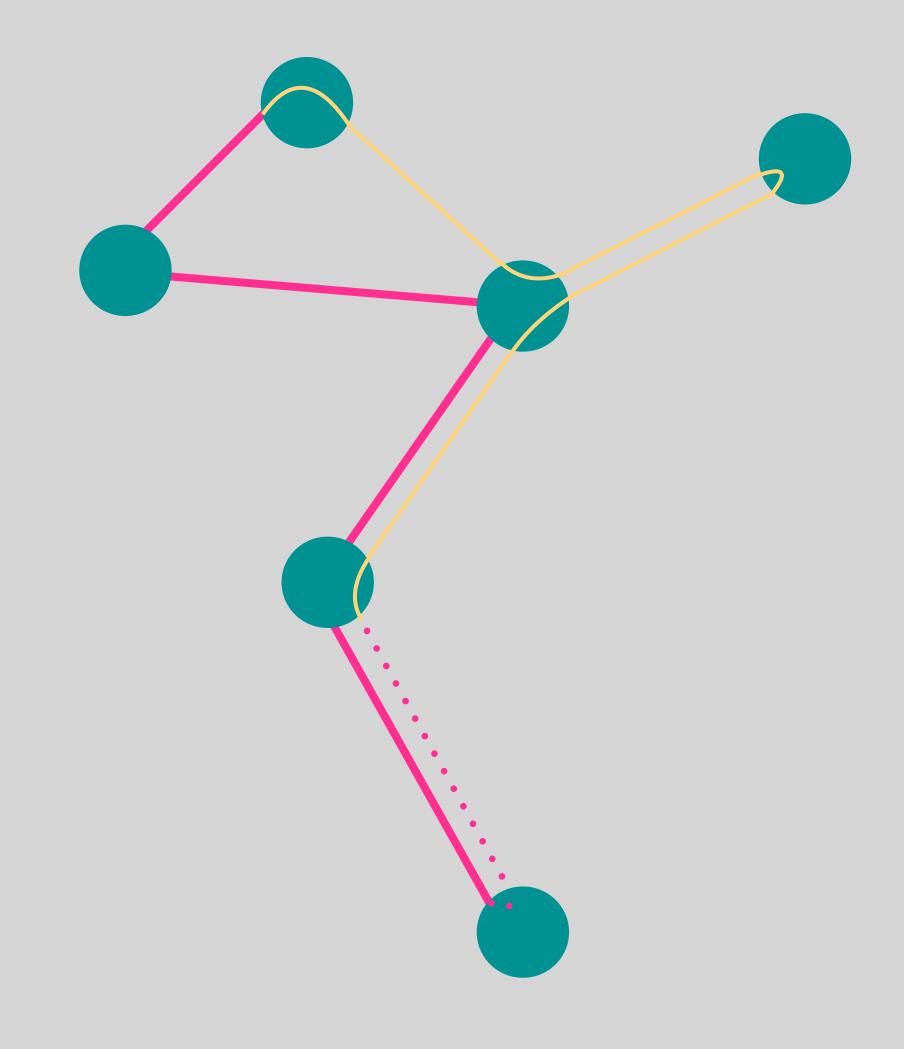
3. Find Eulerian Tour



1. Find the MST T

2. Duplicate all edges of T

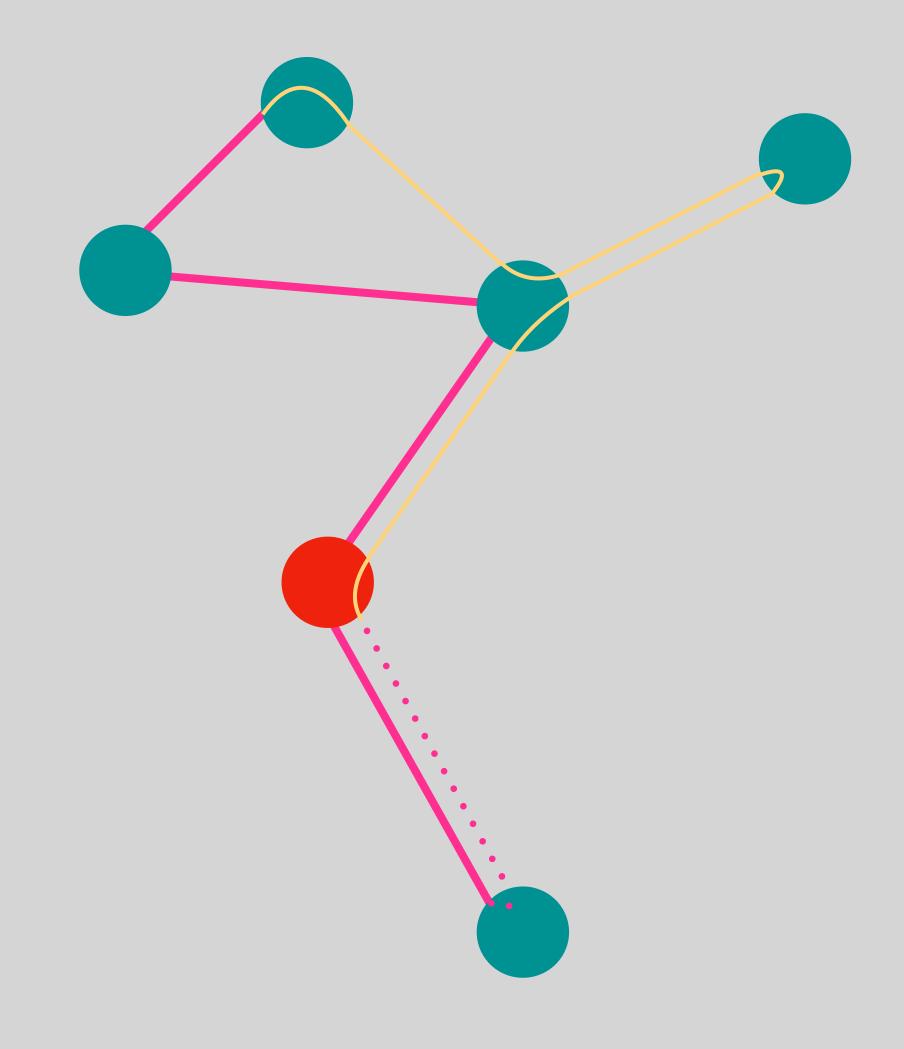
3. Find Eulerian Tour



1. Find the MST T

2. Duplicate all edges of T

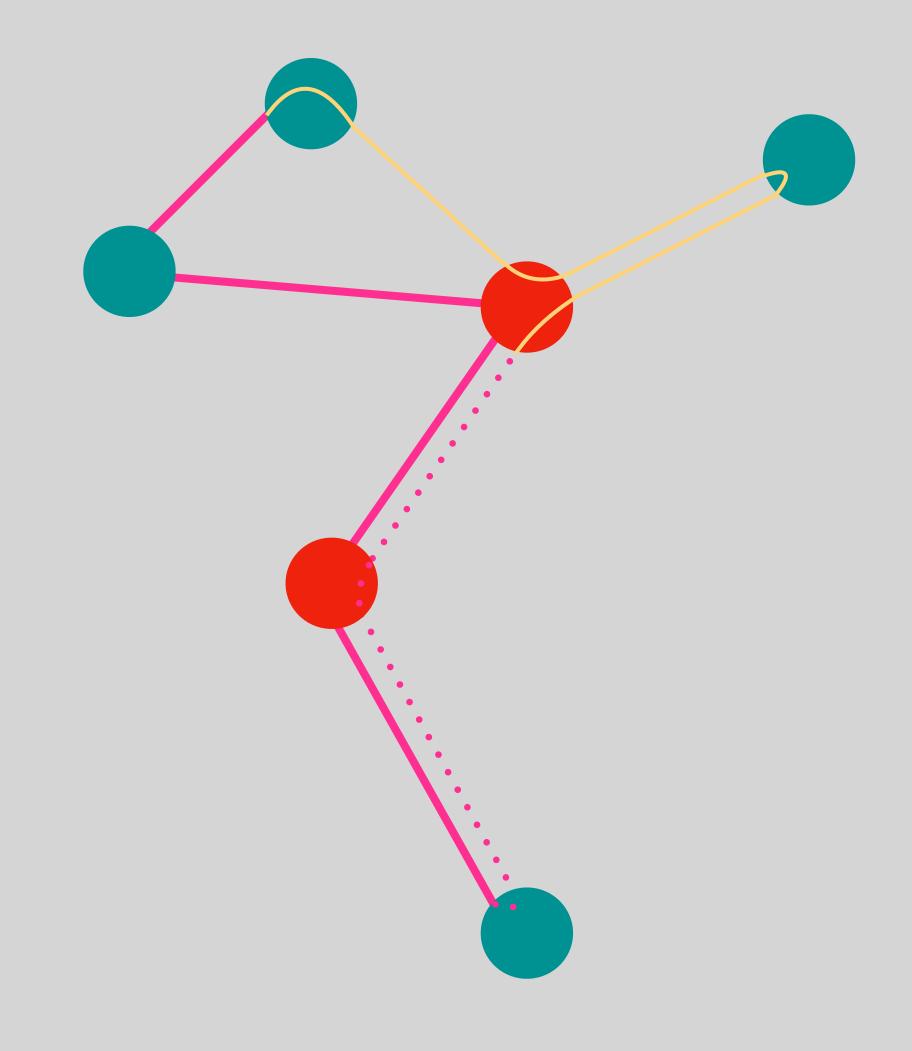
3. Find Eulerian Tour



1. Find the MST T

2. Duplicate all edges of T

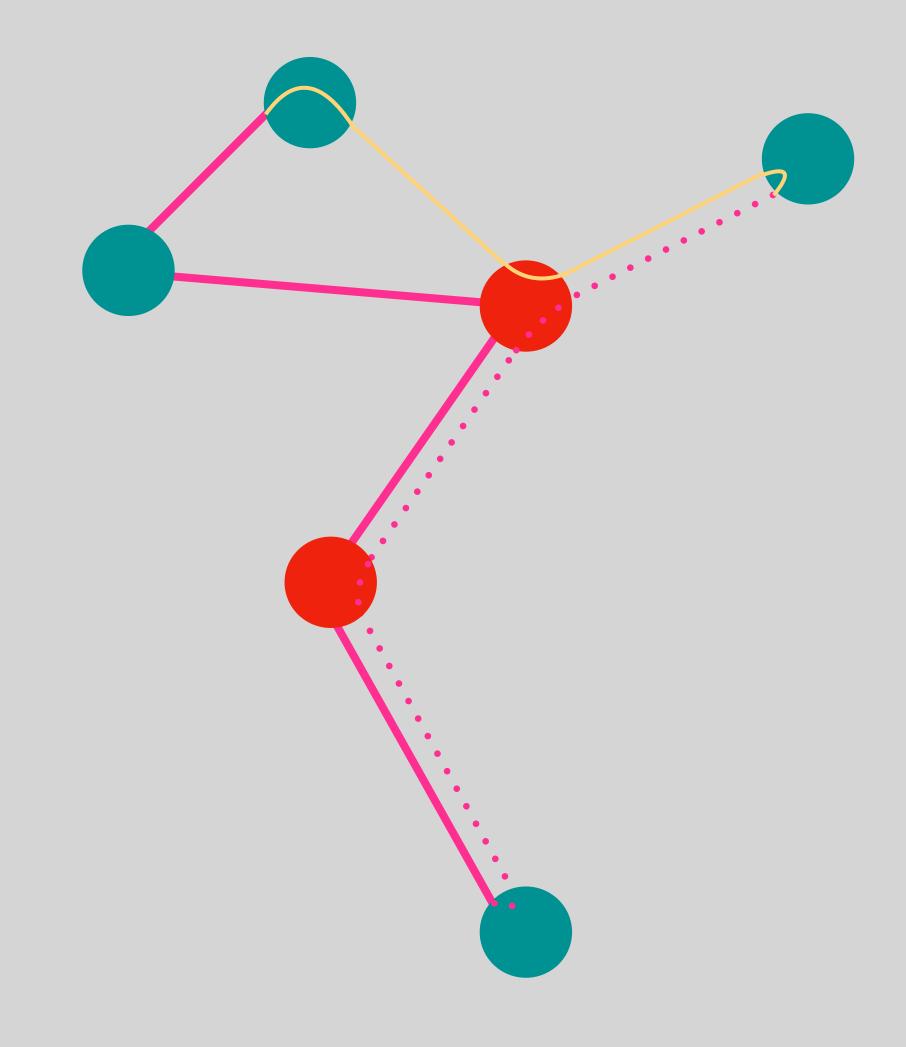
3. Find Eulerian Tour



1. Find the MST T

2. Duplicate all edges of T

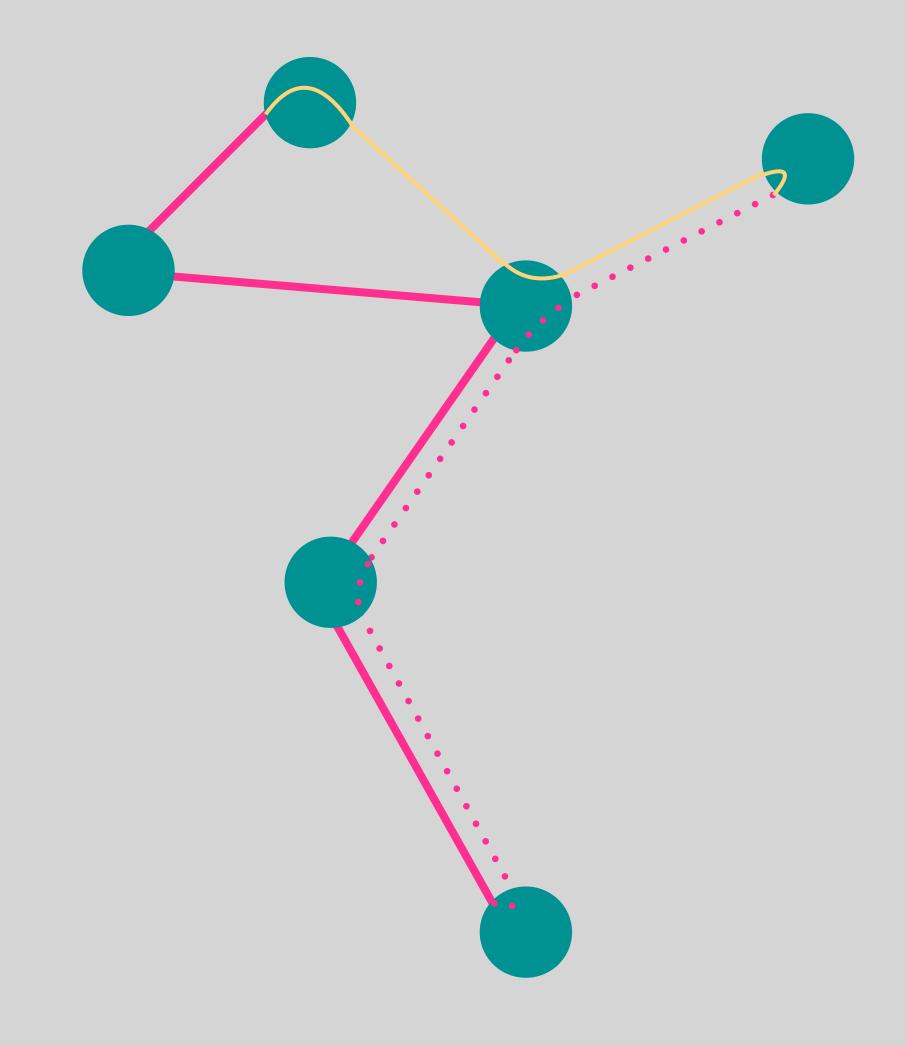
3. Find Eulerian Tour



1. Find the MST T

2. Duplicate all edges of T

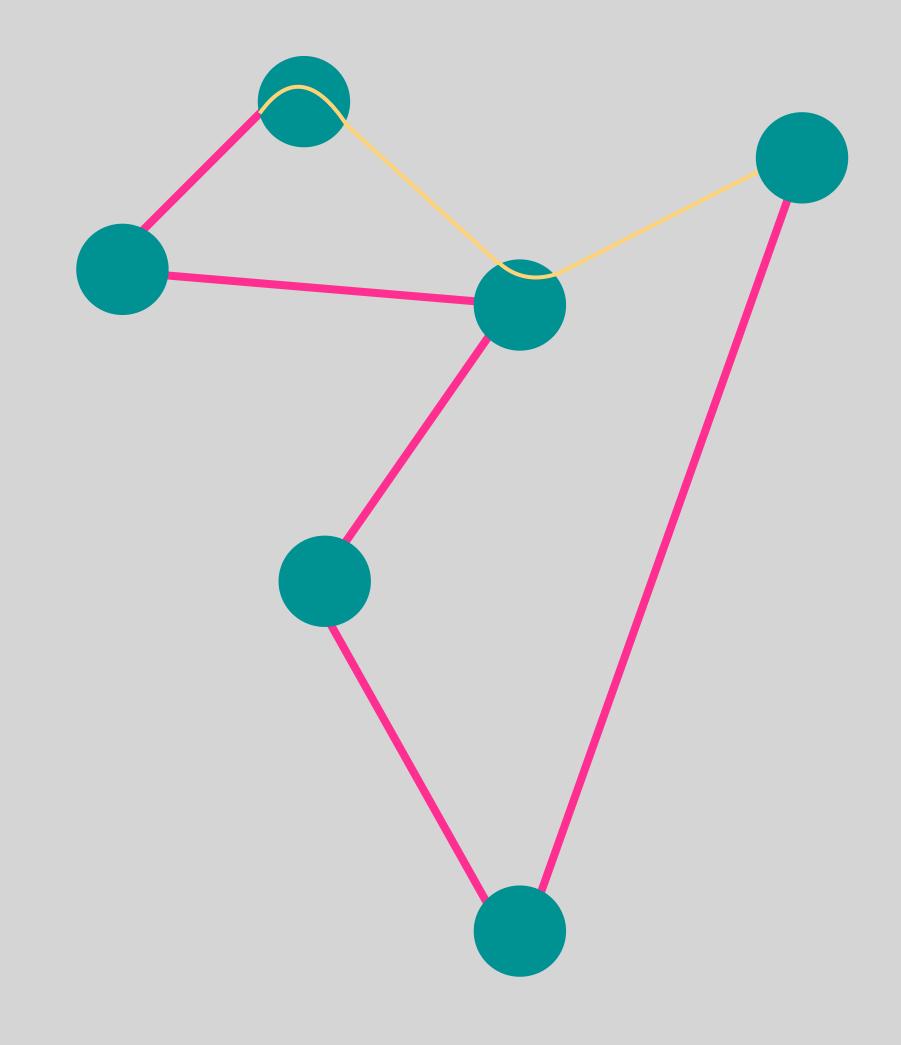
3. Find Eulerian Tour



1. Find the MST T

2. Duplicate all edges of T

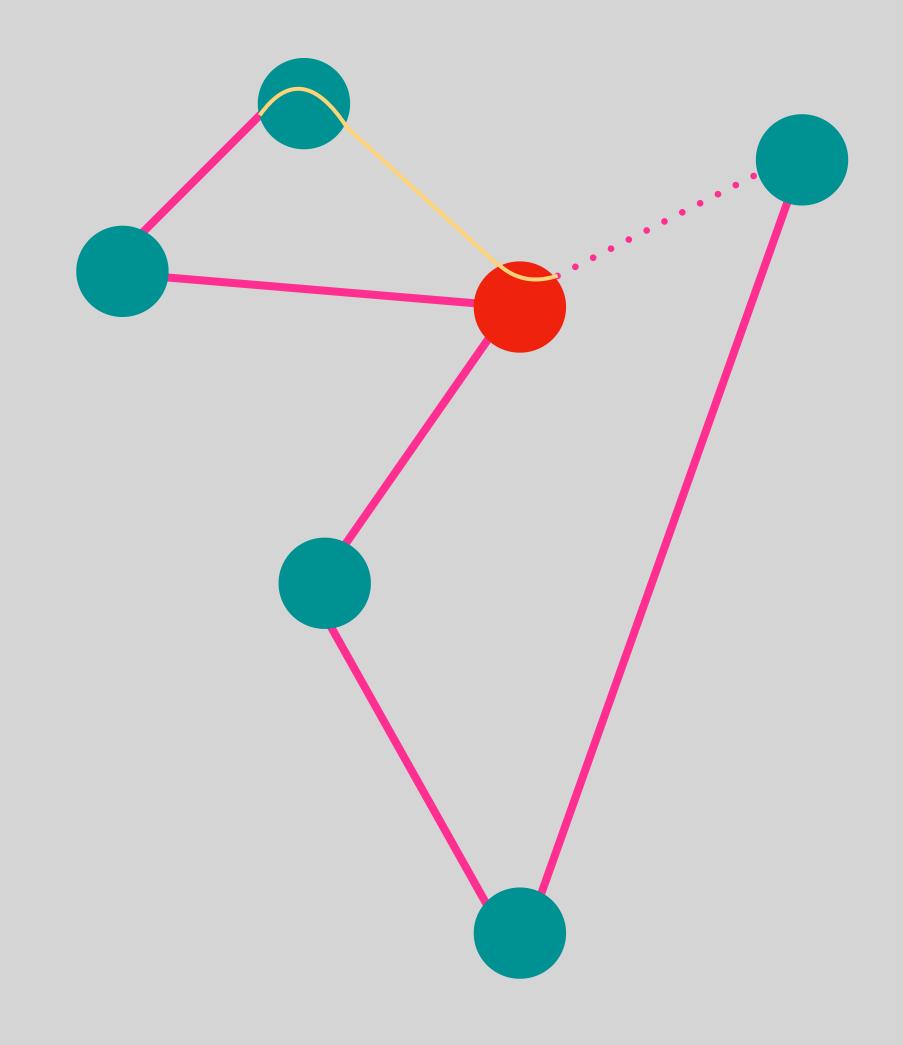
3. Find Eulerian Tour



1. Find the MST T

2. Duplicate all edges of T

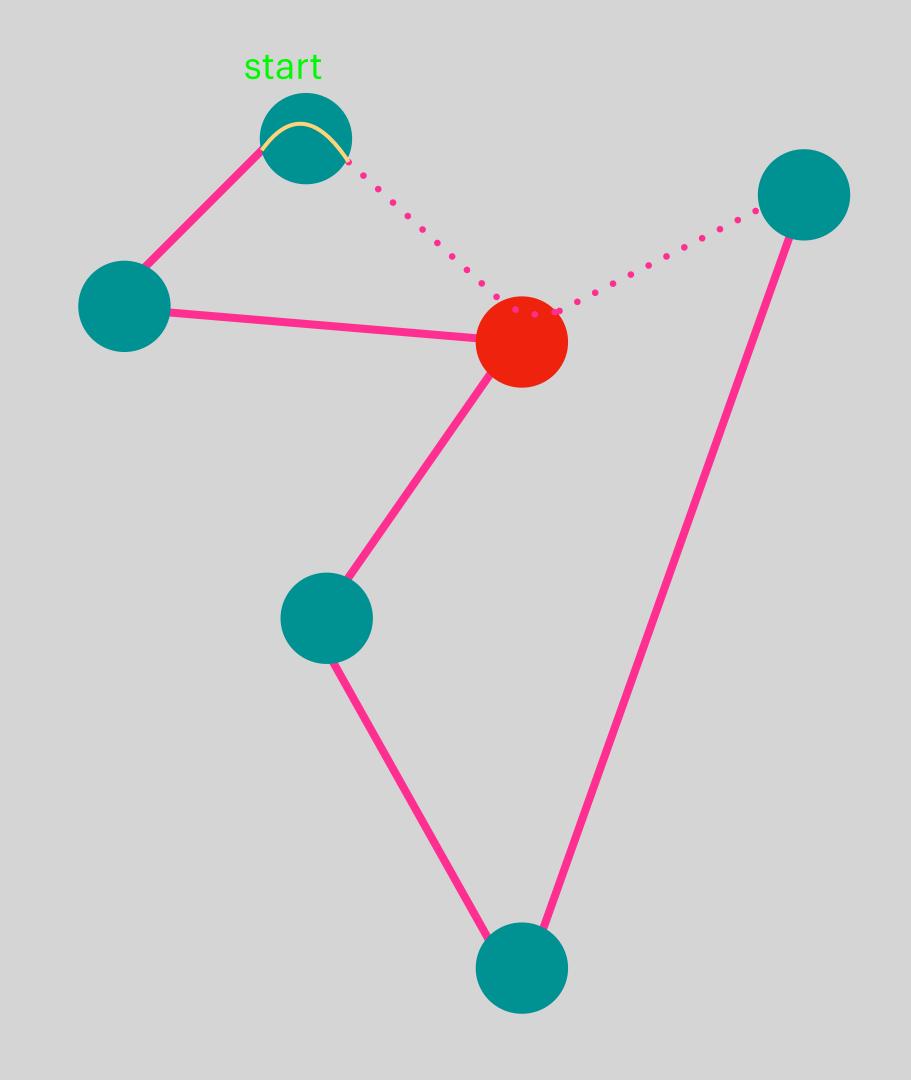
3. Find Eulerian Tour



1. Find the MST T

2. Duplicate all edges of T

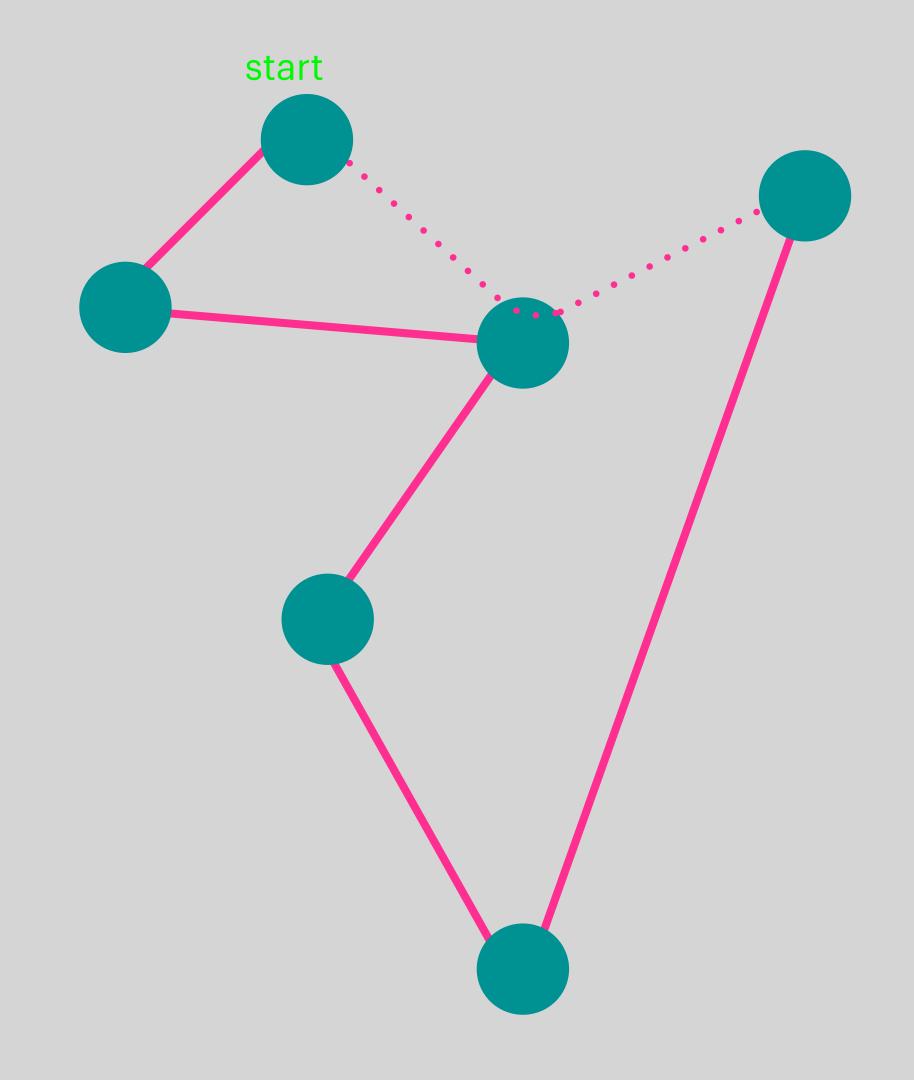
3. Find Eulerian Tour



1. Find the MST T

2. Duplicate all edges of T

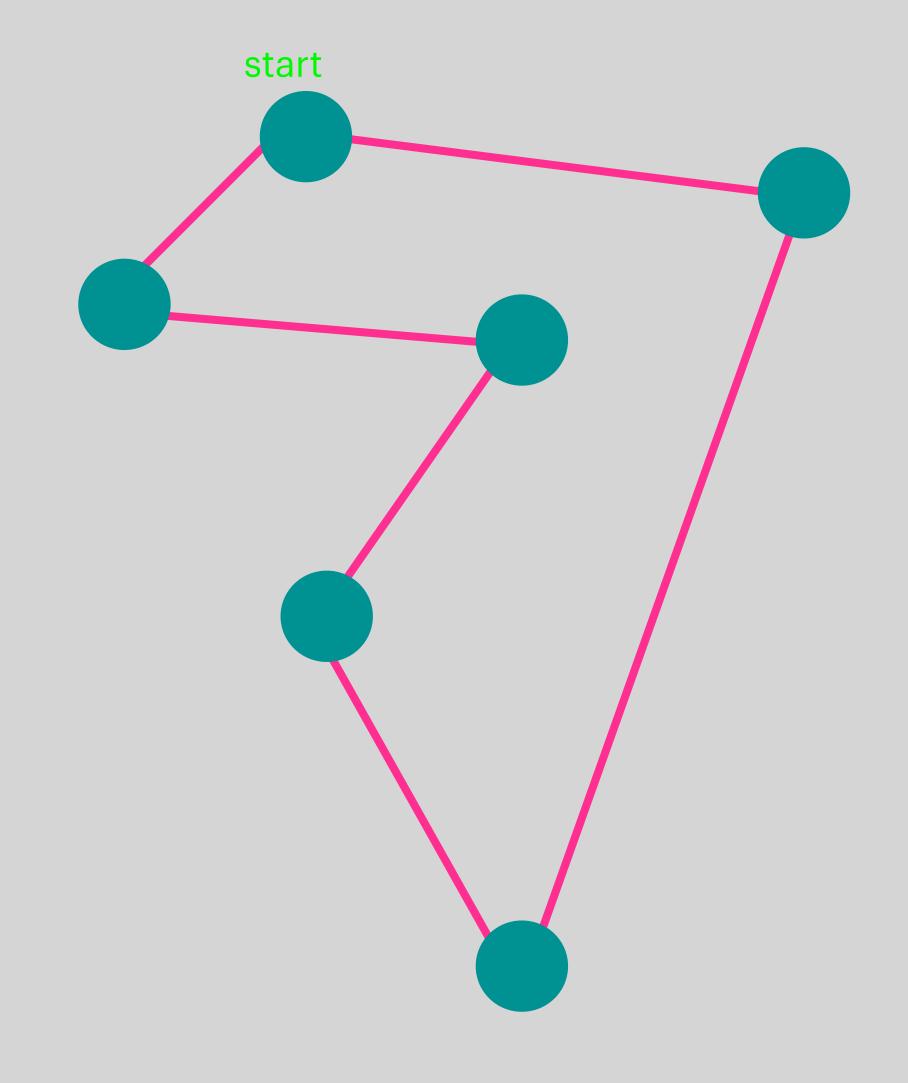
3. Find Eulerian Tour



1. Find the MST T

2. Duplicate all edges of T

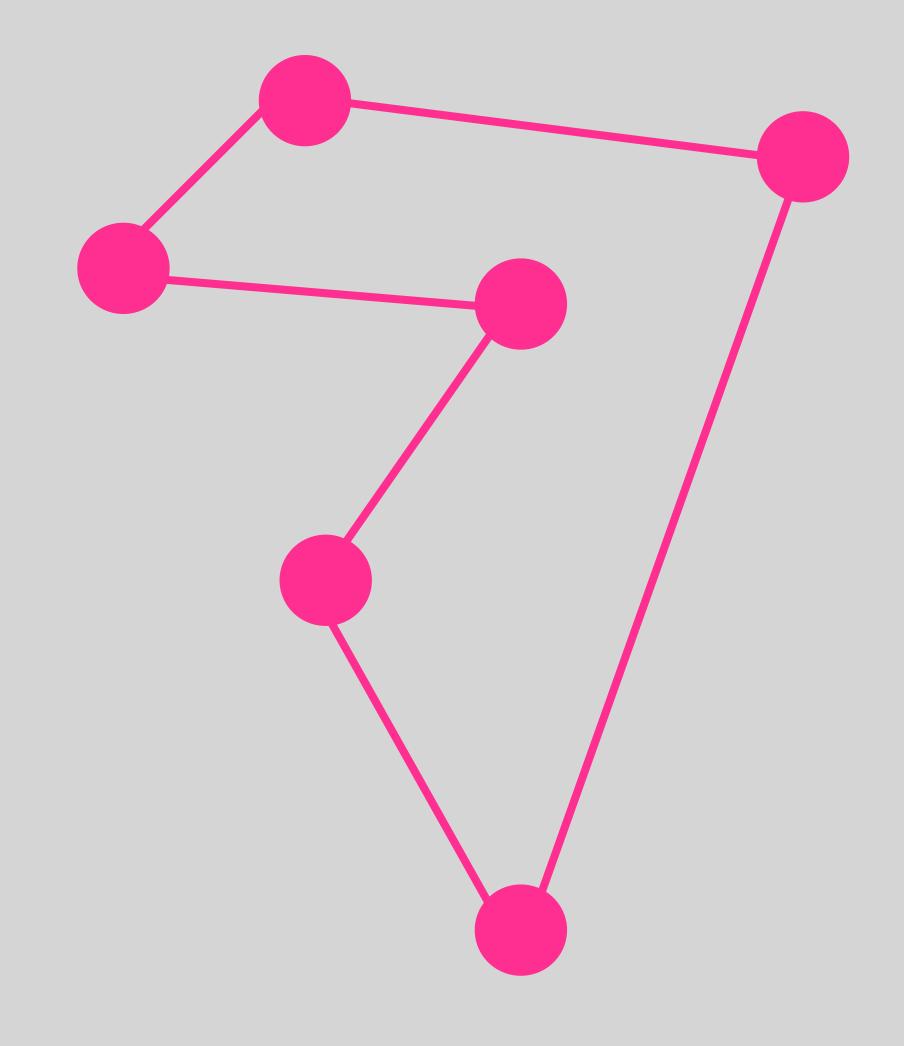
3. Find Eulerian Tour



1. Find the MST T

2. Duplicate all edges of T

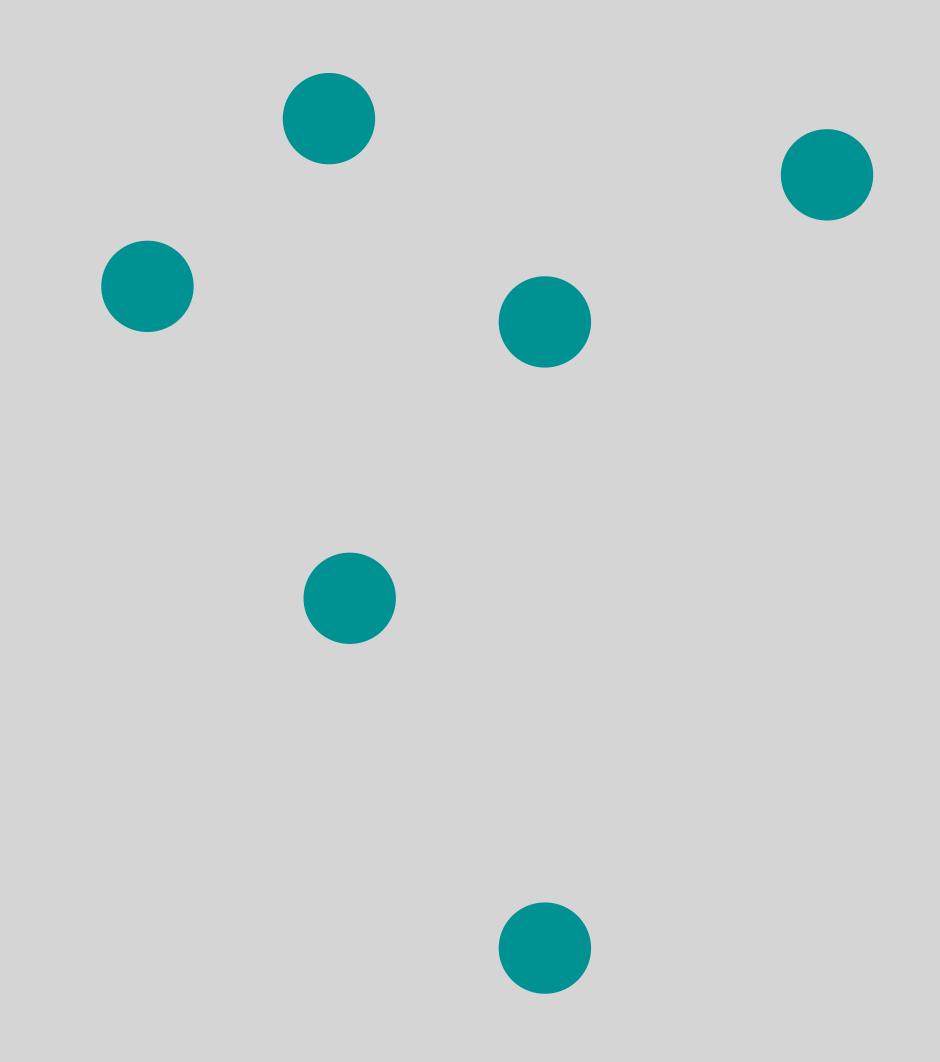
3. Find Eulerian Tour

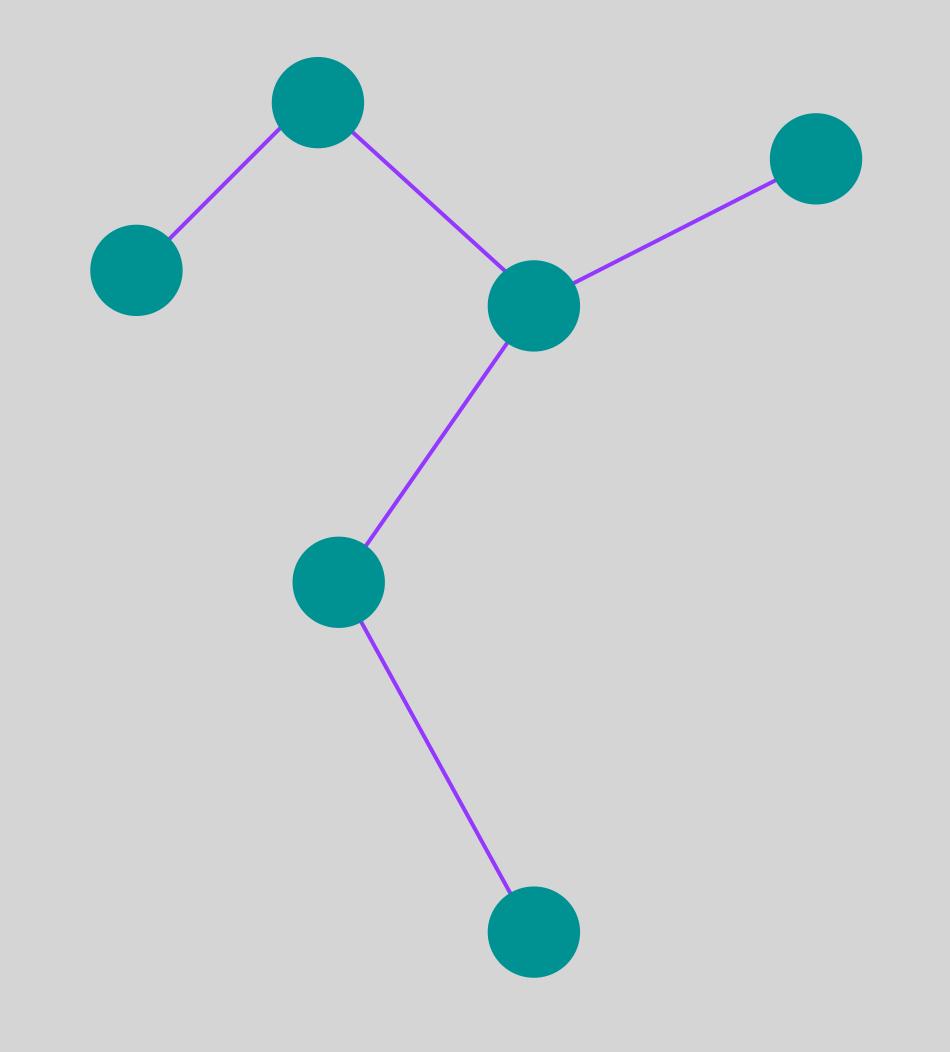


1. Find the MST T

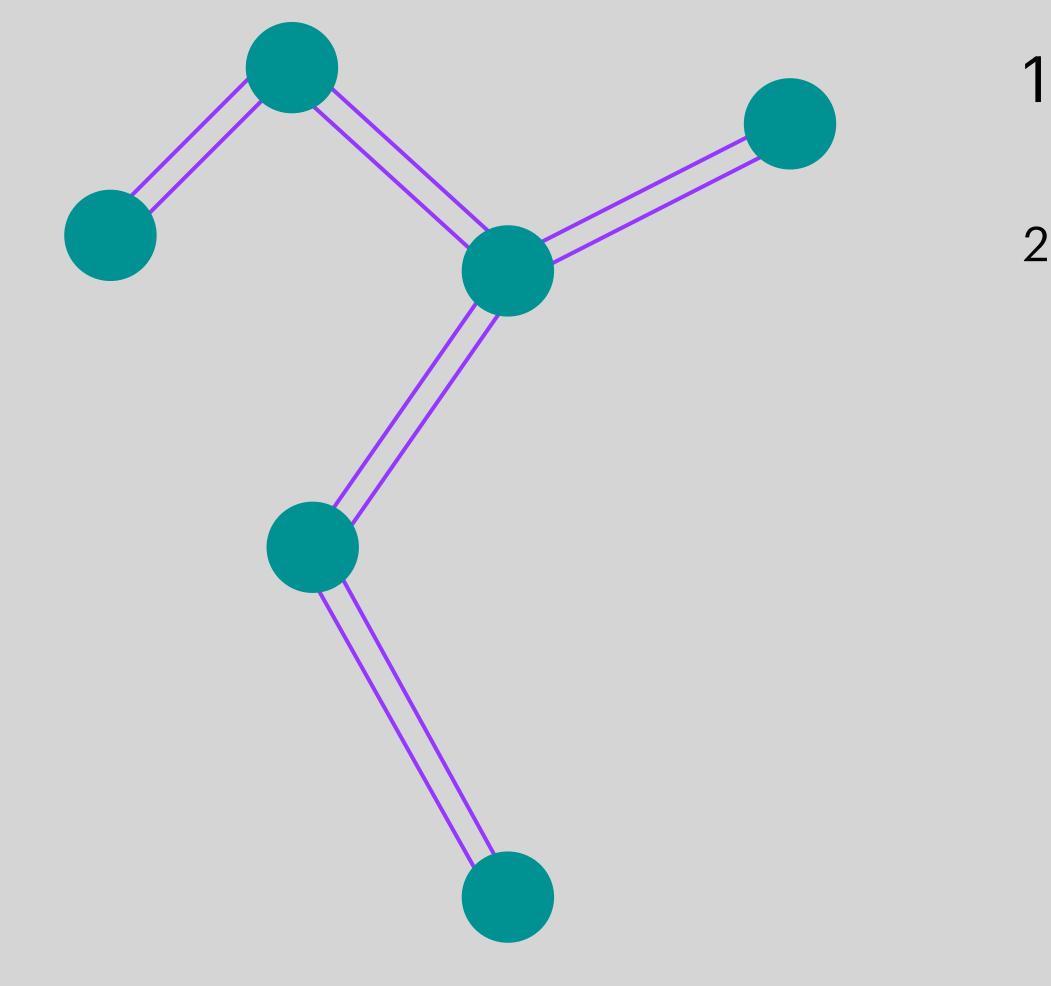
2. Duplicate all edges of T

3. Find Eulerian Tour

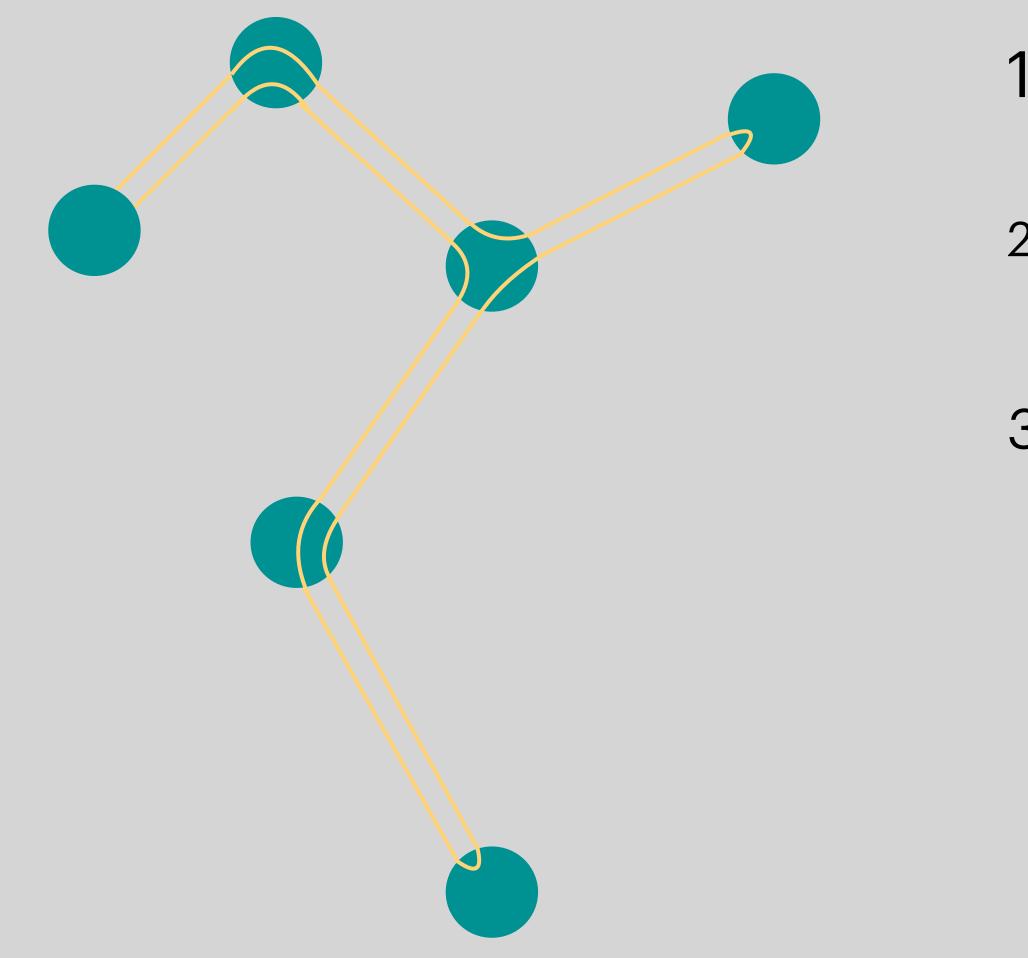




$l(T) \leq OPT(K_n, l)$ 1. Find the MST T

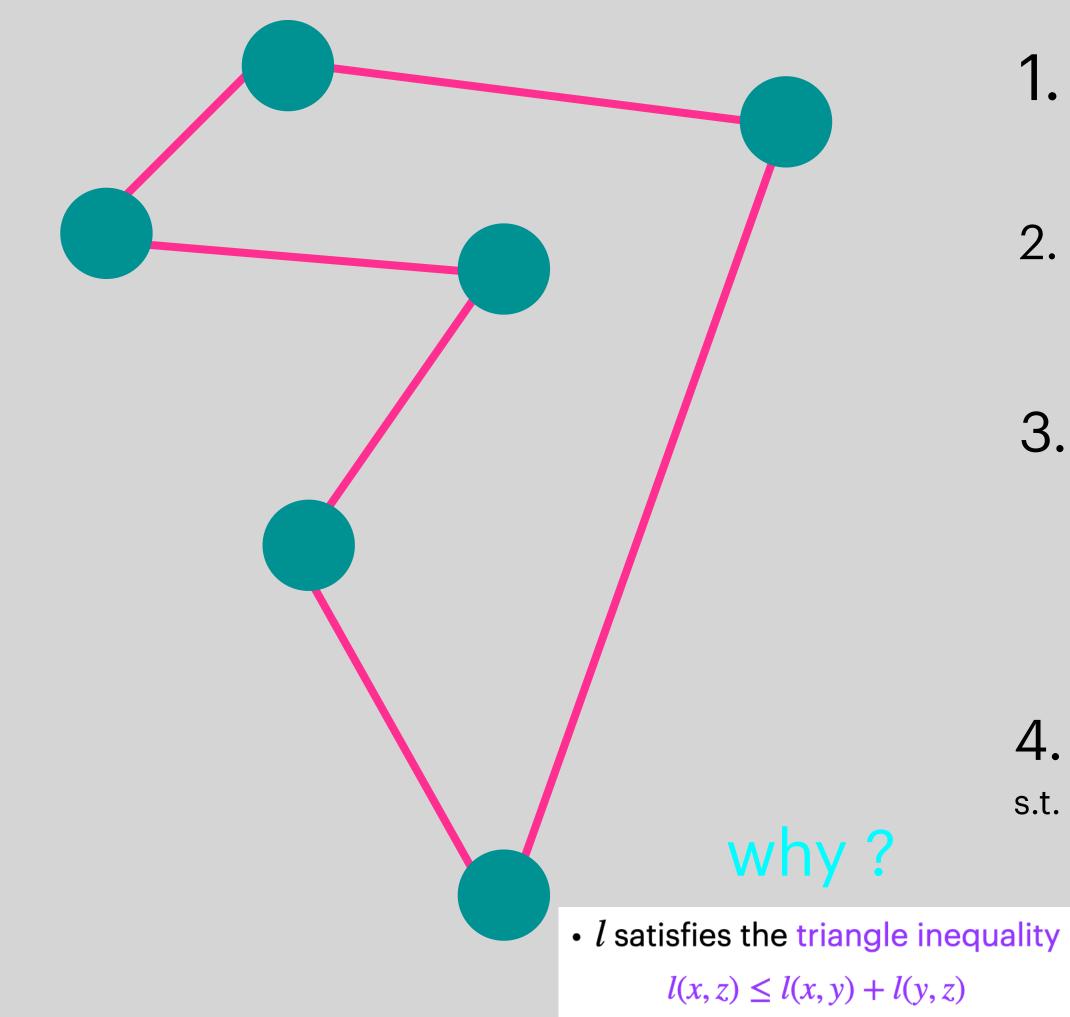


- $l(T) \leq OPT(K_n, l)$ 1. Find the MST T
- $2l(T) \leq 2OPT(K_n, l)$ 2. Duplicate all edges of T



- $l(T) \leq OPT(K_n, l)$ 1. Find the MST T
- $2l(T) \leq 2OPT(K_n, l)$ 2. Duplicate all edges of T
- 3. Find Eulerian Tour

 $l(W) = 2 l(T) \le 2 OPT(K_n, l)$



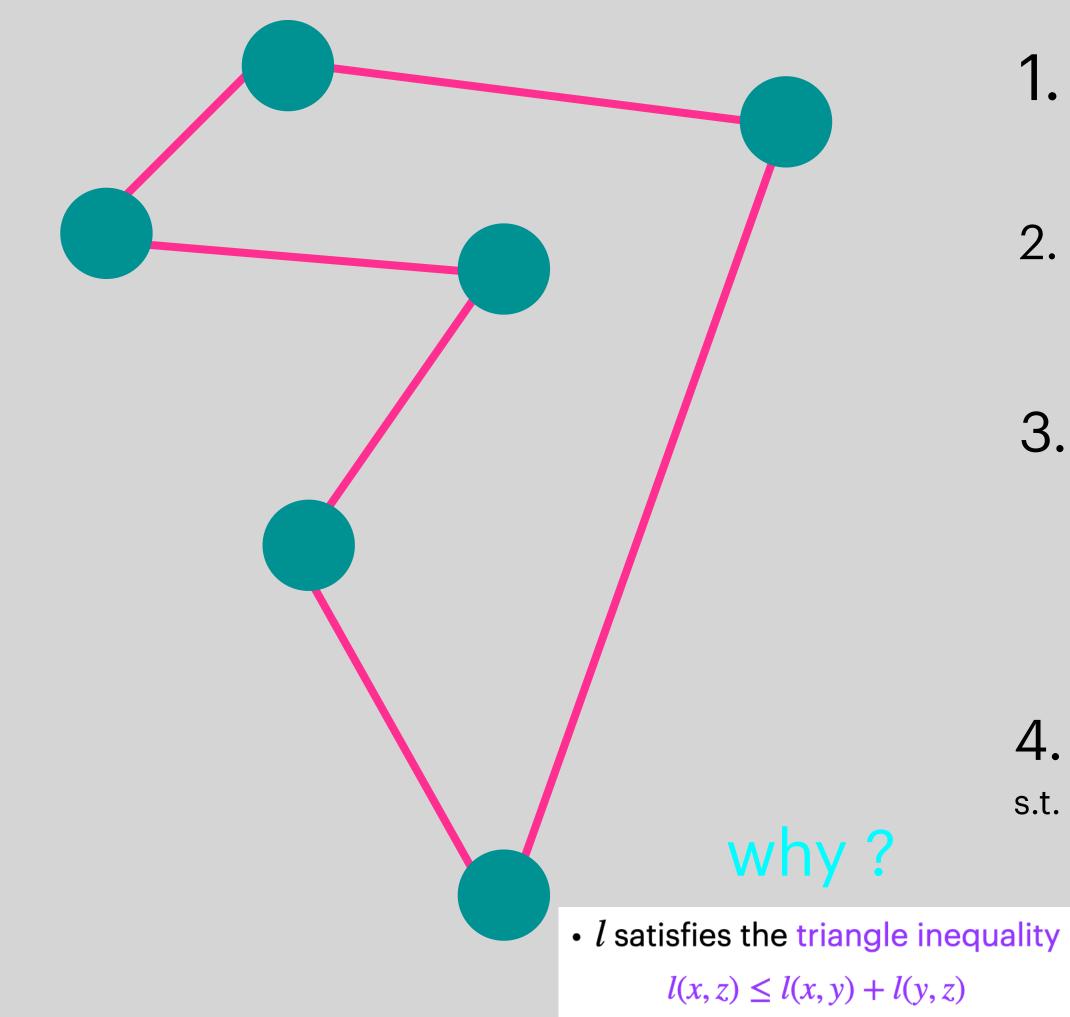
- $l(T) \leq OPT(K_n, l)$ 1. Find the MST T
- $2l(T) \leq 2OPT(K_n, l)$ 2. Duplicate all edges of T
- 3. Find Eulerian Tour

$l(W) = 2 l(T) \le 2 OPT(K_n, l)$

once using shortcuts 4. Traverse s.t. each vertex is visited exactly once \Rightarrow Hamiltonian Cycle C

 $l(C) \le l(W) = 2 l(T) \le 2 OPT(K_n, l)$

Metric TSP : 2-Approximation Correctness



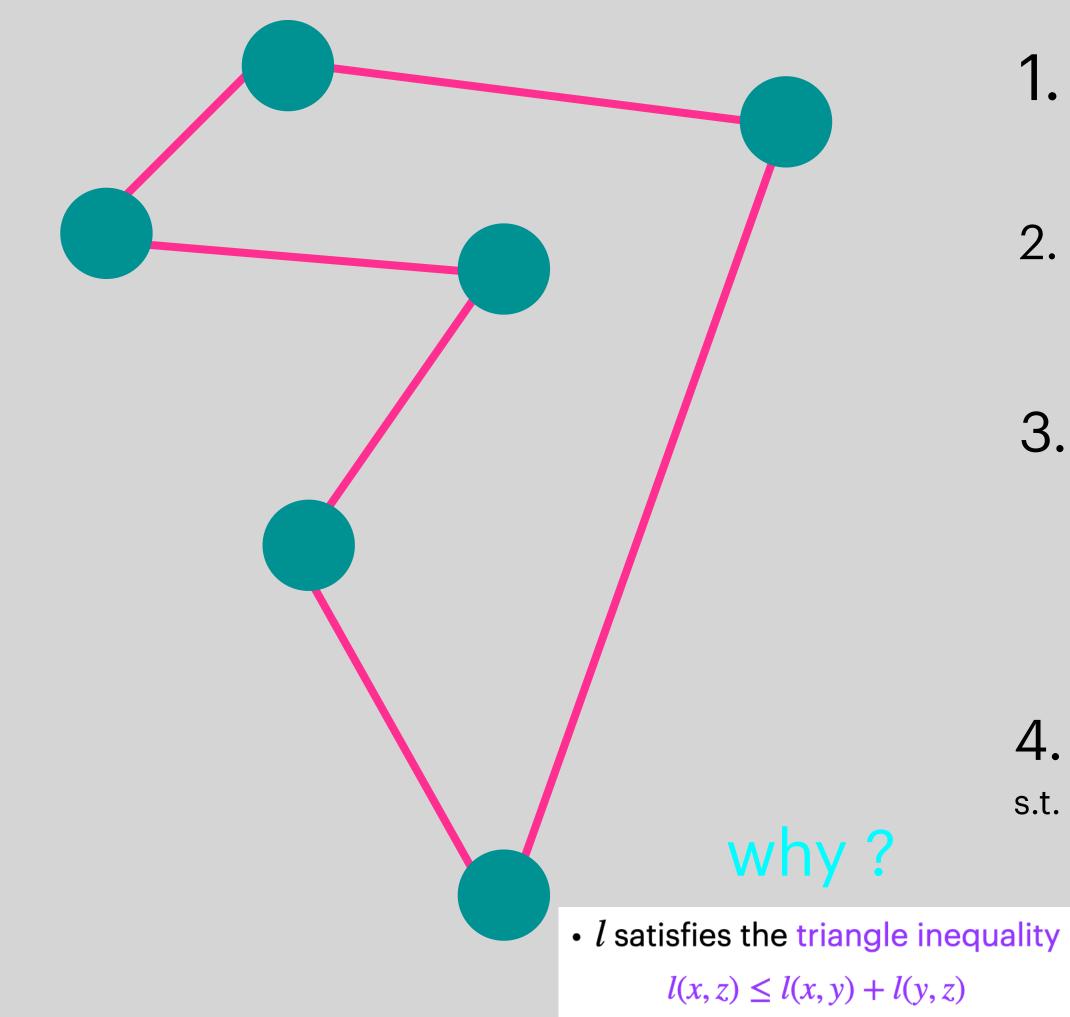
- $l(T) \leq OPT(K_n, l)$ 1. Find the MST T
- $2l(T) \leq 2OPT(K_n, l)$ 2. Duplicate all edges of T
- 3. Find Eulerian Tour

$l(W) = 2 l(T) \le 2 OPT(K_n, l)$

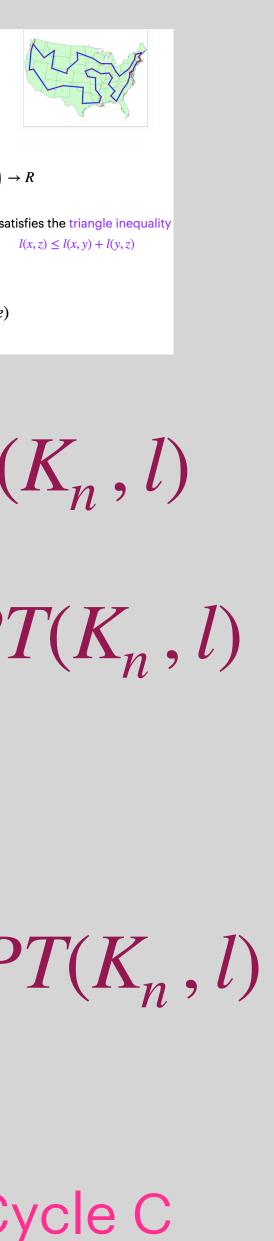
once using shortcuts 4. Traverse s.t. each vertex is visited exactly once \Rightarrow Hamiltonian Cycle C

 $l(C) \le l(W) = 2 l(T) \le 2 OPT(K_n, l)$

Metric TSP : 2-Approximation Correctness



Metric TSP: 2-Approximation Problem Description



- A complete Graph K_n of n vertices
 - Distances l inbetween every 2 vertex

Goal

 $l(x, z) \le l(x, y) + l(y, z)$

where OPT = H : Hamiltonian Cycle $\sum l(e)$

 $l(C) \leq 2 l(OPT)$

- 1. Find the MST T
- 2. Duplicate all edges of T

 $l(T) \leq OPT(K_n, l)$

 $2l(T) \leq 2OPT(K_n, l)$

3. Find Eulerian Tour

$l(W) = 2 l(T) \le 2 OPT(K_n, l)$

once using shortcuts 4. Traverse s.t. each vertex is visited exactly once \Rightarrow Hamiltonian Cycle C

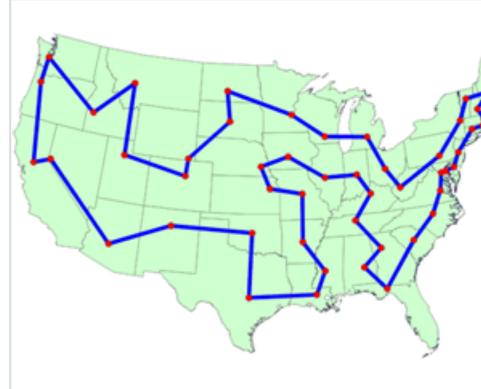
 $l(C) \le l(W) = 2 l(T) \le 2 OPT(K_n, l)$

Metric TSP : 1.5-Approximation Problem Description

- A complete Graph K_n of n vertices Given :
 - Distances *l* inbetween ever

 Hamiltonian Cycle C s.t. To find :

where OPT = H: Hamiltonian Cycle



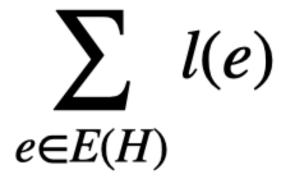
ry 2 vertex
$$l: \binom{[n]}{2} \to R$$

• *l* satisfies the triangle inequality

 $l(x, z) \le l(x, y) + l(y, z)$

$l(C) \leq 1.5 \ l(OPT)$

min

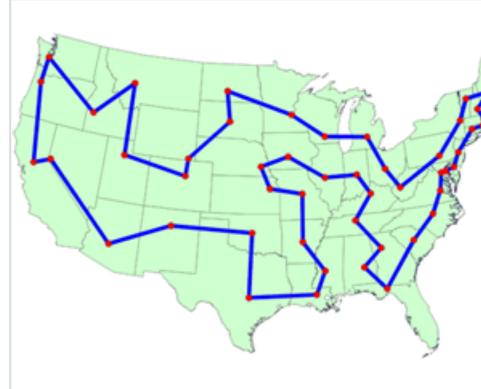


Metric TSP : 1.5-Approximation Problem Description

- A complete Graph K_n of n vertices Given :
 - Distances *l* inbetween ever

 Hamiltonian Cycle C s.t. To find :

where OPT = H: Hamiltonian Cycle



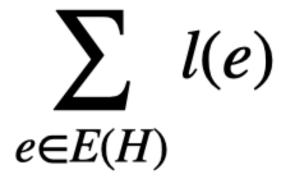
ry 2 vertex
$$l: \binom{[n]}{2} \to R$$

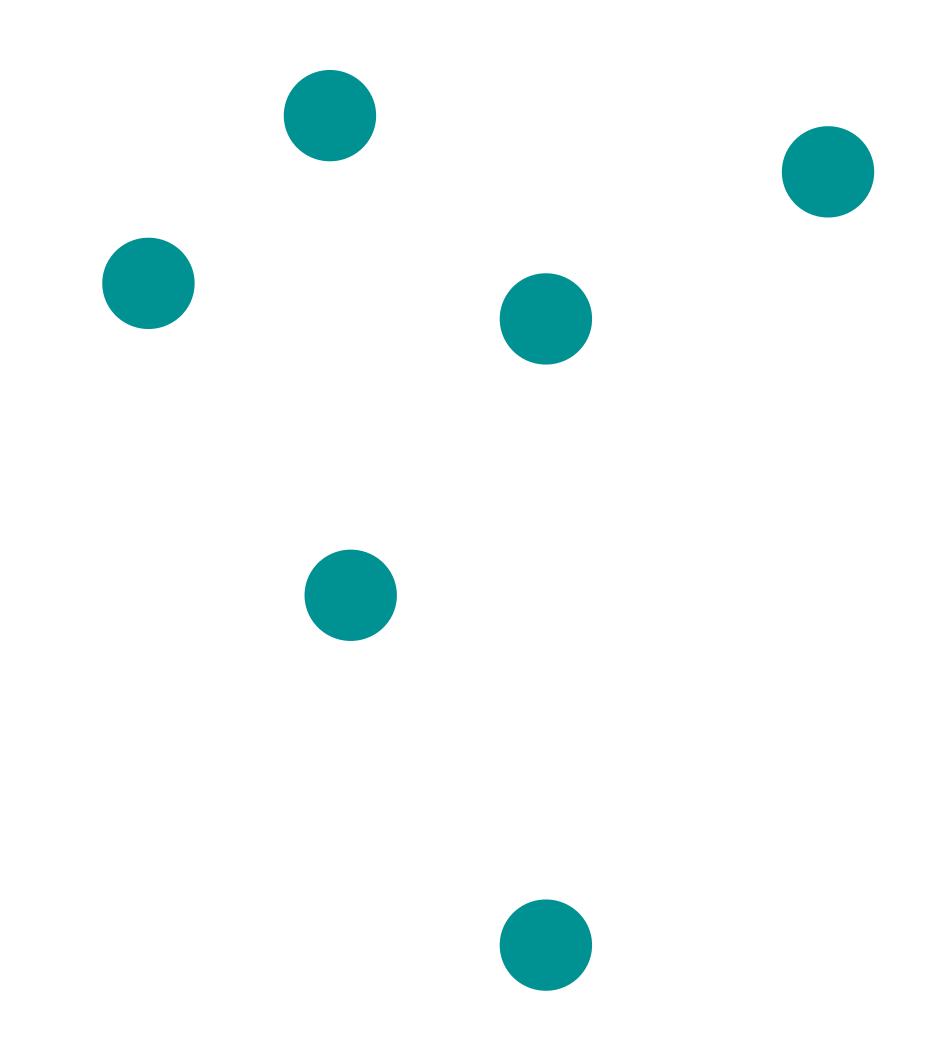
• *l* satisfies the triangle inequality

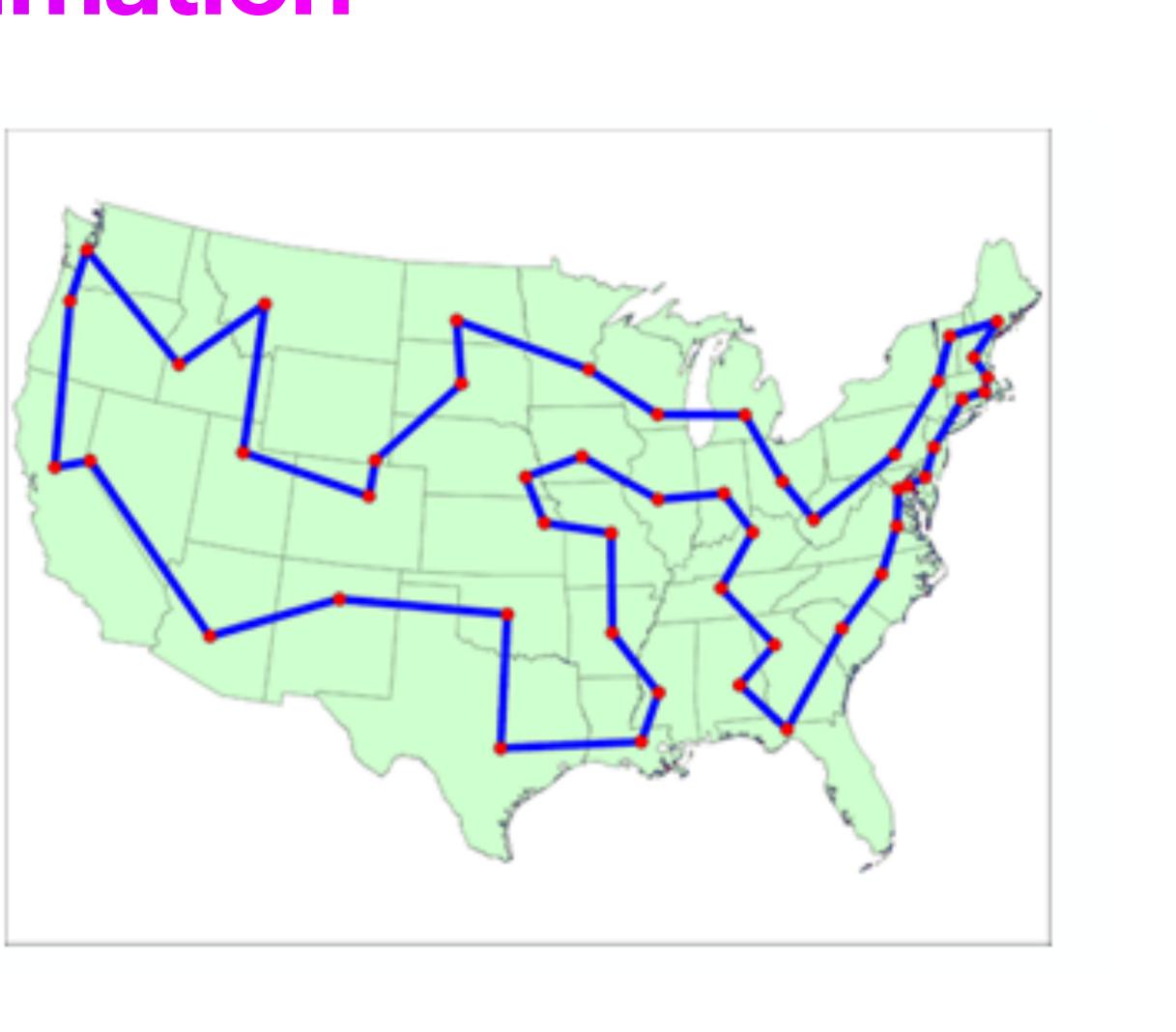
 $l(x, z) \le l(x, y) + l(y, z)$

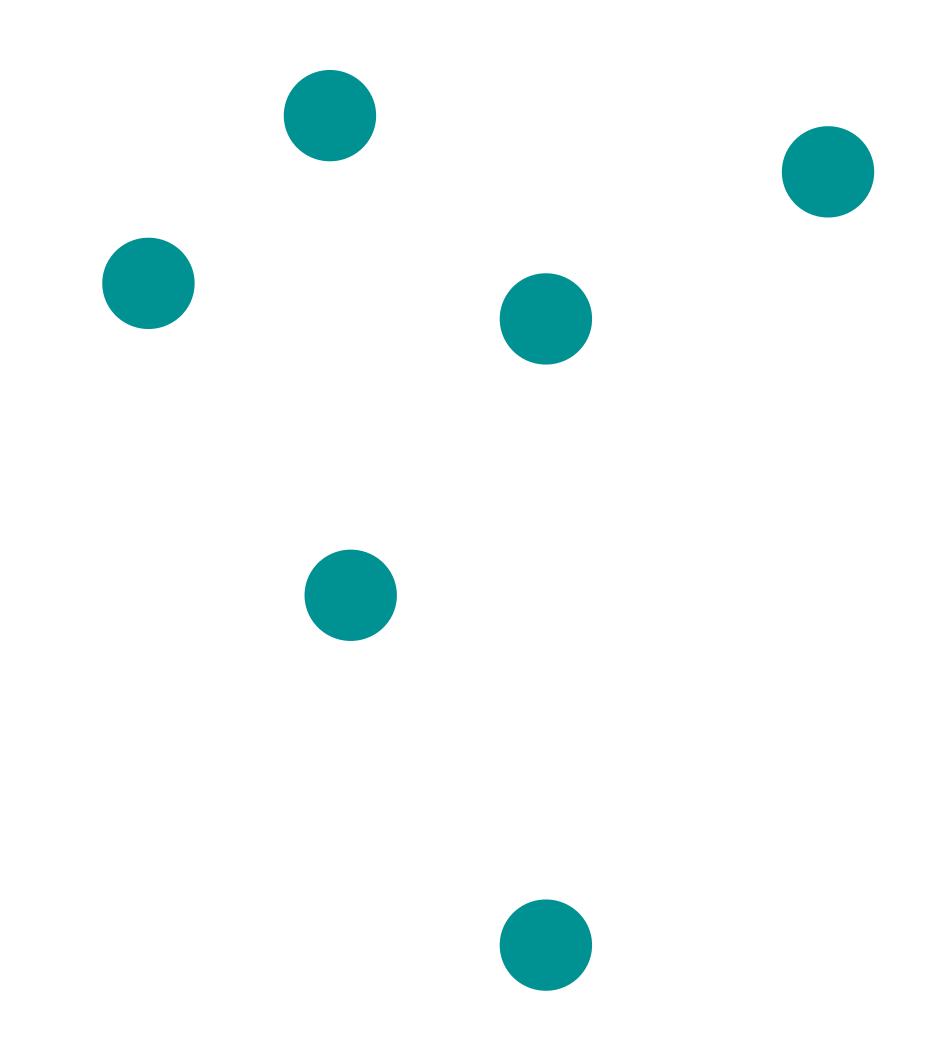
$l(C) \leq 1.5 \ l(OPT)$

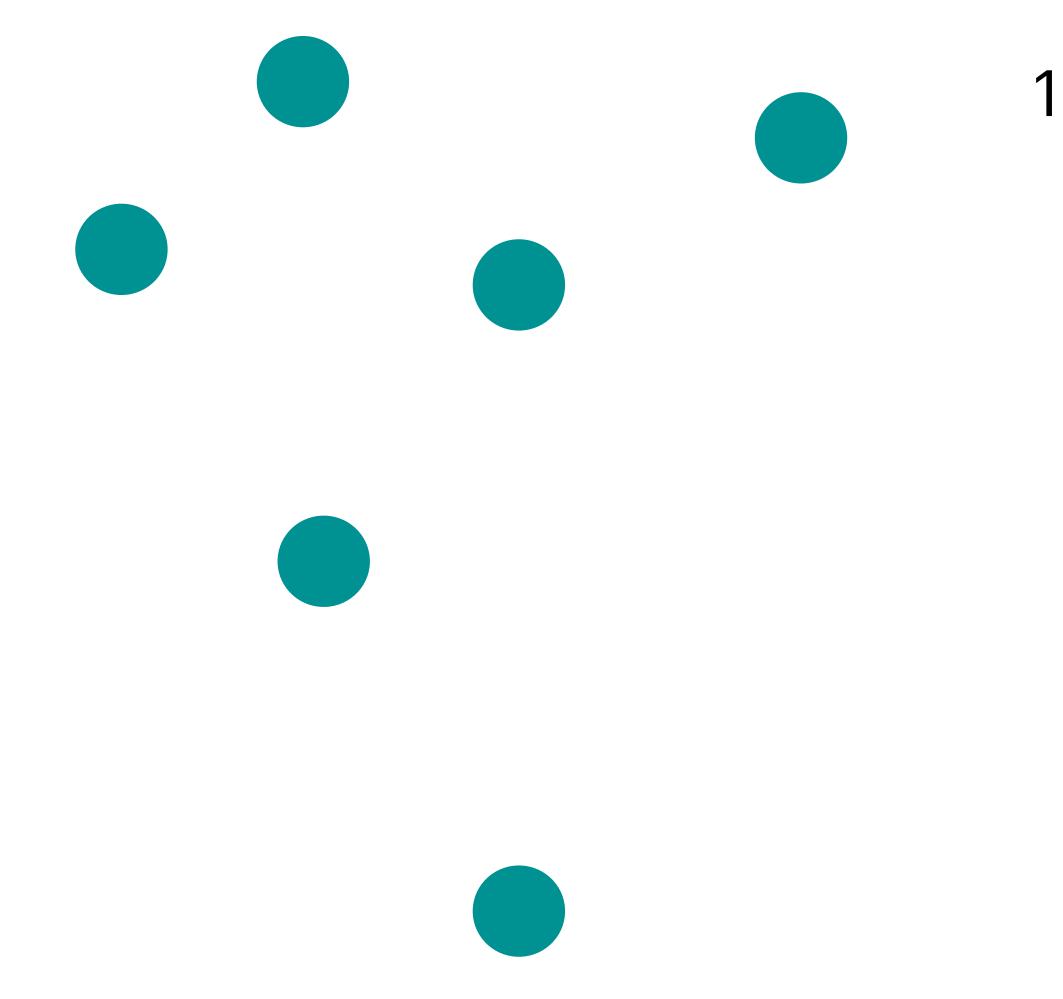
min



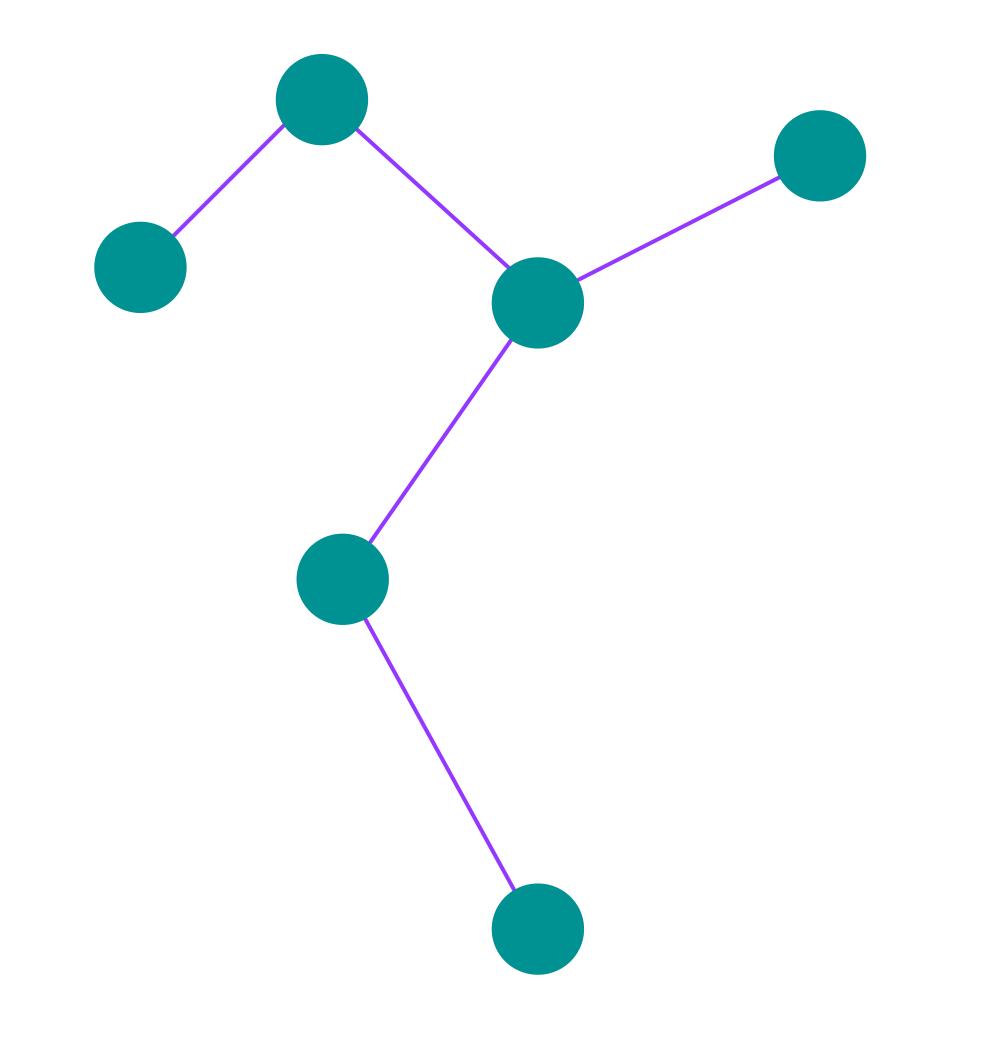




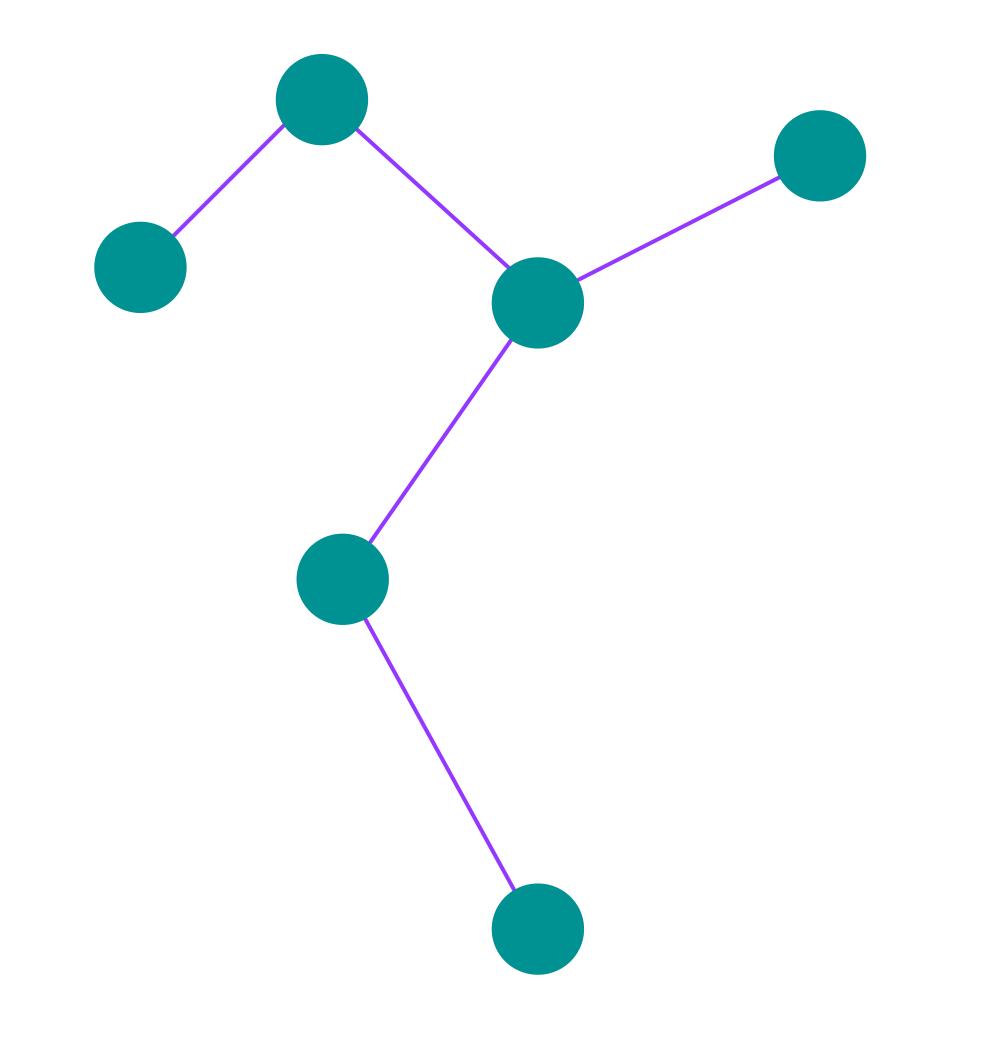




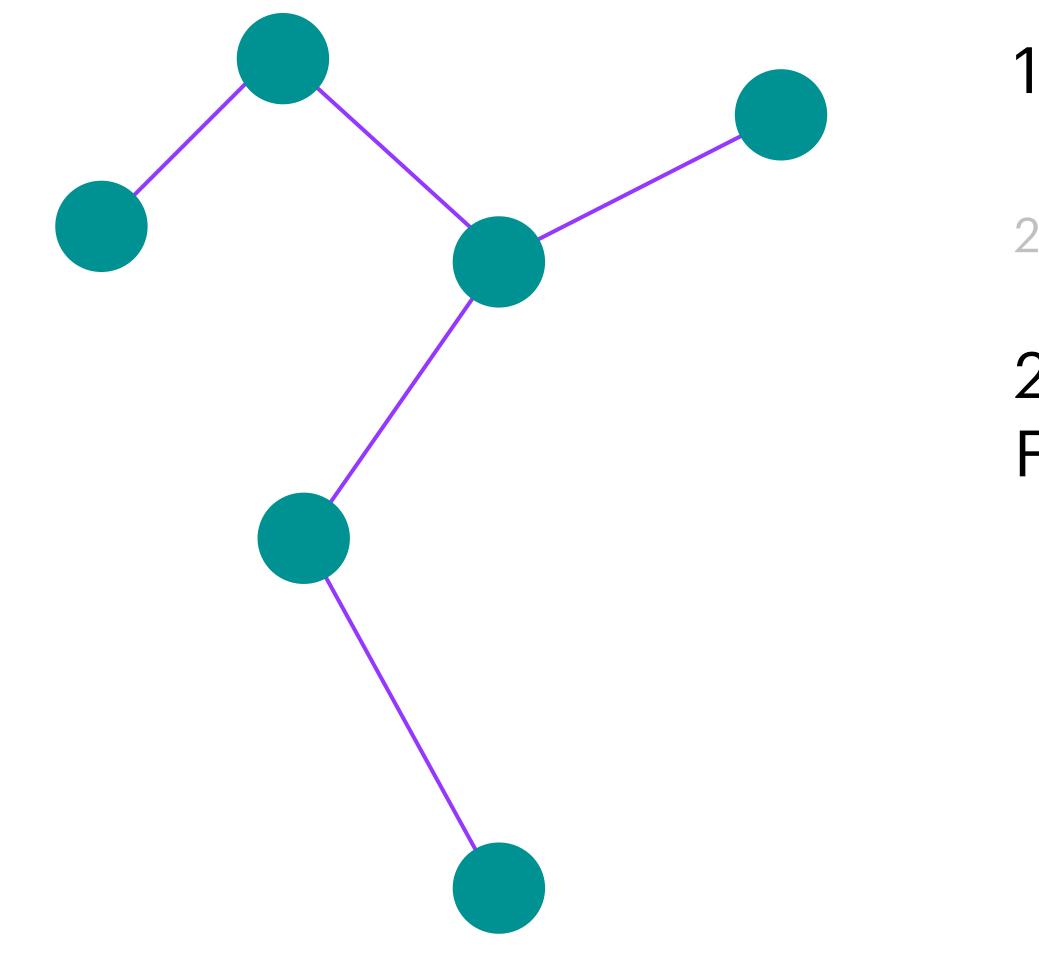
1. Find the MST T



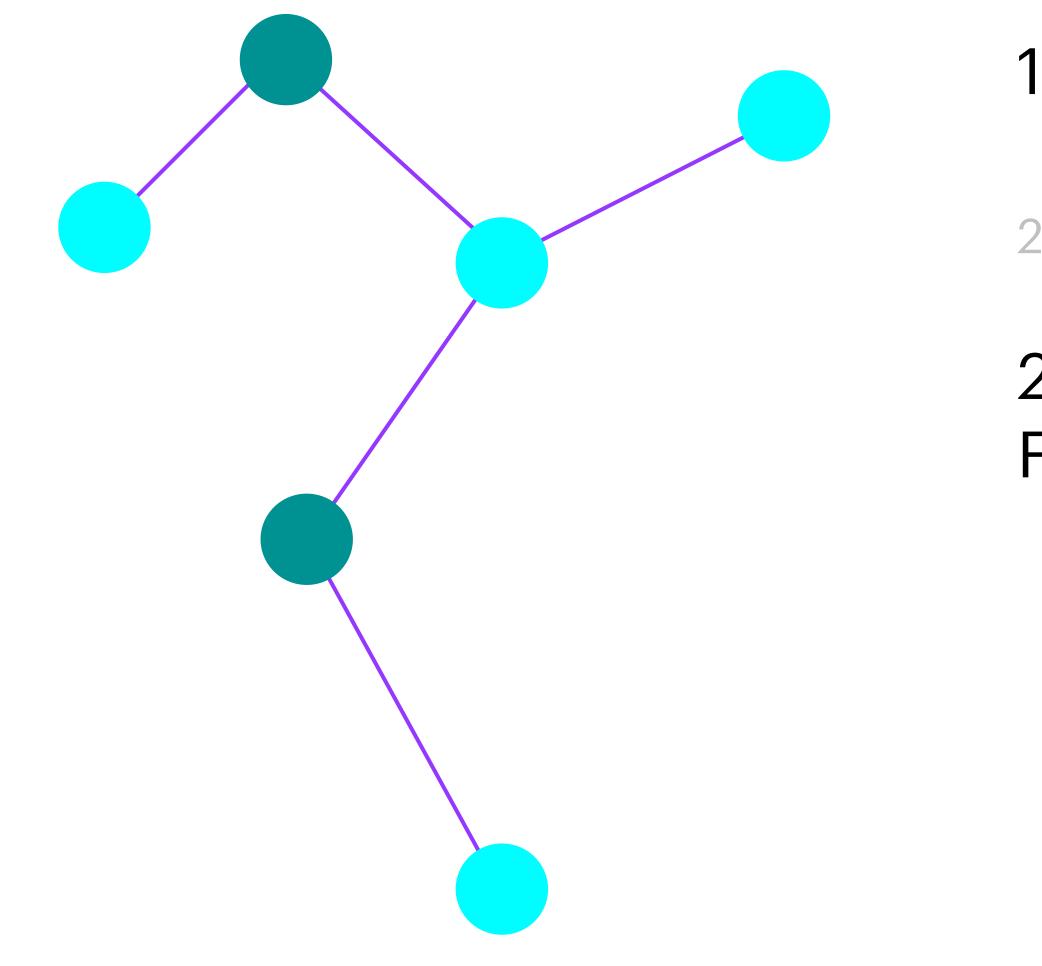
1. Find the MST T



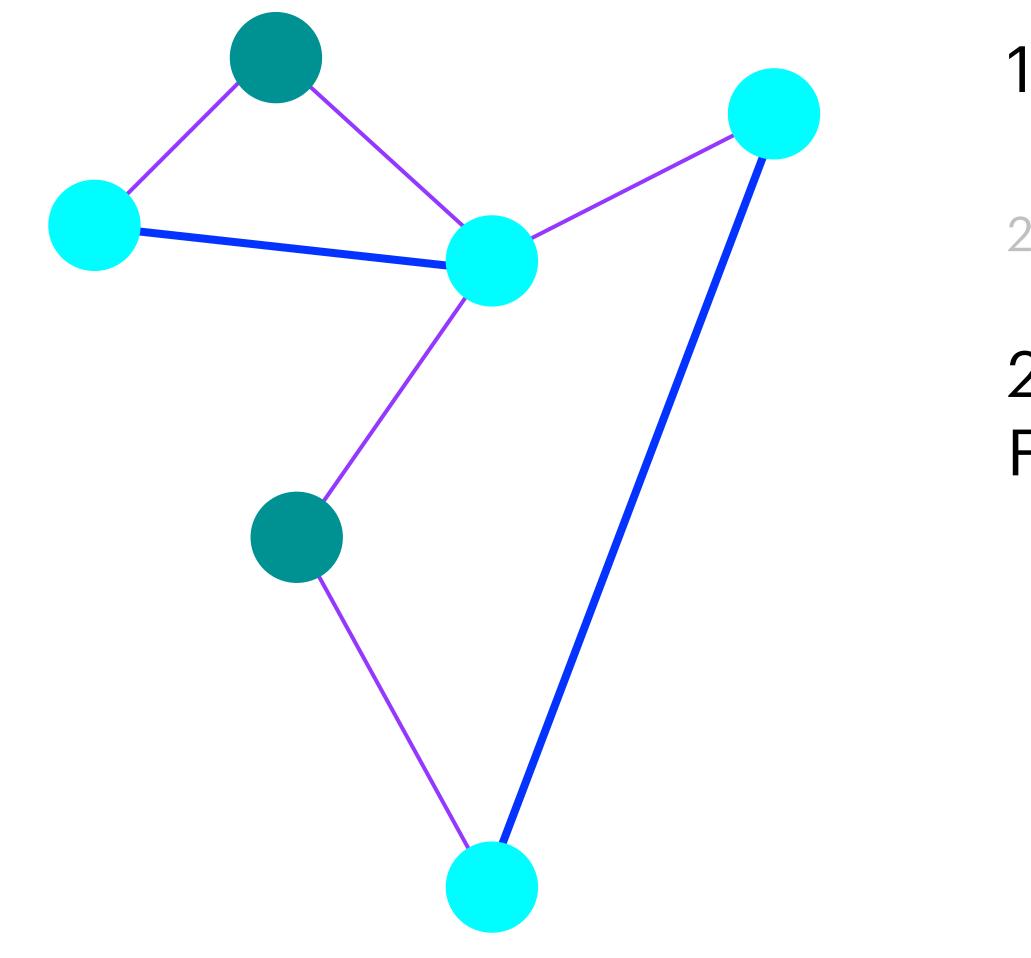
$l(T) \leq OPT(K_n, l)$ 1. Find the MST T



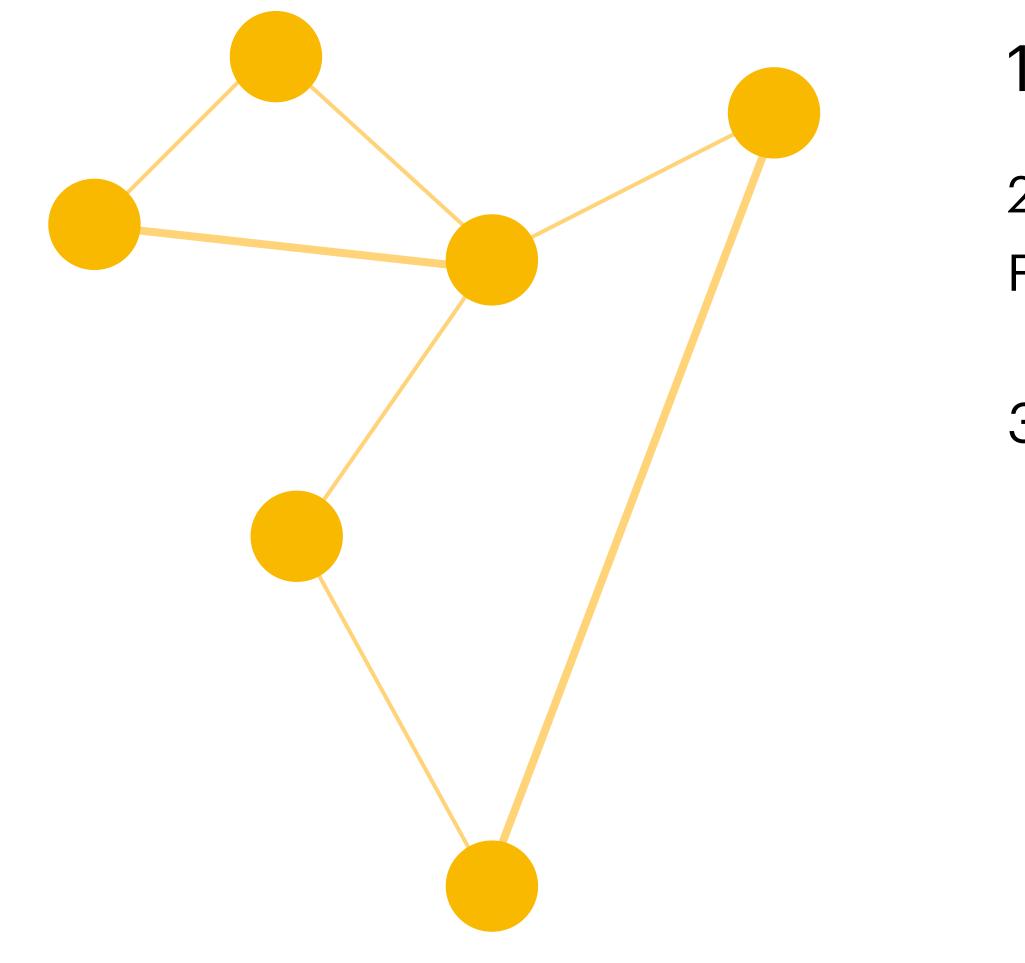
- 1. Find the MST T $l(T) \leq OPT(K_n, l)$
- 2. Duplicate all edges of T $2l(T) \le 2OPT(K_n, l)$
- 2'. X:= Vertices with odd degree in TFind minimal Matching *M* for X



- 1. Find the MST T $l(T) \leq OPT(K_n, l)$
- 2. Duplicate all edges of T $2l(T) \le 2OPT(K_n, l)$
- 2'. X = Vertices with odd degree in TFind minimal Matching *M* for X

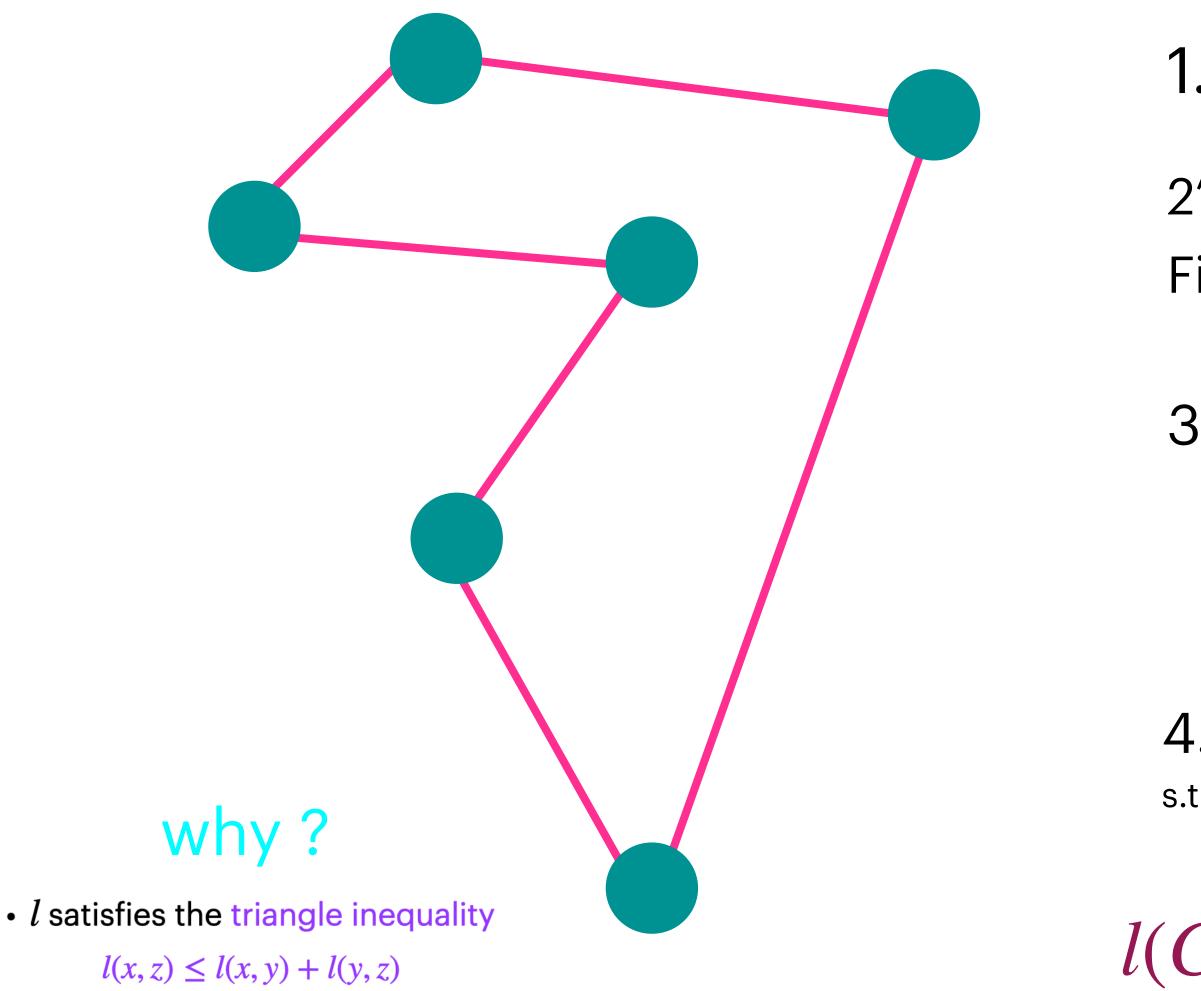


- 1. Find the MST T $l(T) \leq OPT(K_n, l)$
- 2. Duplicate all edges of T $2l(T) \le 2OPT(K_n, l)$
- 2'. X:= Vertices with odd degree in TFind minimal Matching *M* for X $l(M) \le \frac{1}{2} OPT(K_n, l)$



- 1. Find the MST T $l(T) \leq OPT(K_n, l)$
- 2'. X:= Vertices with odd degree in TFind minimal Matching *M* for X $\tilde{l}(M) \leq \frac{1}{2} OPT(K_n, l)$
- 3. Find Eulerian Tour W

 $l(W) = l(T) + l(M) \le 1.5 OPT(K_n, l)$



- 1. Find the MST T $l(T) \leq OPT(K_n, l)$
- 2'. X:= Vertices with odd degree in TFind minimal Matching *M* for X $l(M) \le \frac{1}{2} OPT(K_n, l)$
- 3. Find Eulerian Tour W

 $l(W) = l(T) + l(M) \le 1.5 OPT(K_n, l)$

4. Traverse *W* once using shortcuts s.t. each vertex is visited exactly once \Rightarrow Hamiltonian Cycle C

 $l(C) \le l(W) = l(T) + l(M) \le 1.5 OPT(K_n, l)$

Questions Feedbacks, Recommendations

