

A&W **Exercise Session 1** Introduction

- Logistics
- A&W Overview
- Exam
- How to study for A&W
- Get to know me/you

• Warm up exercise

Outline

Exercise Session here and on wednesday only for today !!

• Normally : Thursdays, 16:15 - 18:00 , HG E 33.1

- Programming Exercise
 - Every week, starting on 2. week
 - CodeExpert
 - 2 points, automatically graded
- Theory Exercise
 - Even weeks, starting on the 2. week
 - until 10:00 on the following Thursday • First ~5 min of the exercise class
 - 2 points, TA graded

Logistics

- Peer Grading Exercise
 - Odd weeks, starting on the 3. week
 - 2 points (upload + peer grading), TA graded

- Mini Quiz
 - Even weeks, starting on the 2. week

• 2 points

W1		Warm up exercise	
W2	Mini Quiz	Theory Exercise	Programming Exercise
W3		Peer Grading Exercise	Programming Exercise
W4	Mini Quiz	Theory Exercise	Programming Exercise
W5		Peer Grading Exercise	Programming Exercise
W6	Mini Quiz	Theory Exercise	Programming Exercise
W7		Peer Grading Exercise	Programming Exercise

Logistics

- Bonus Point Calculation
 - >= %80 of all points -> 0.25 bonus
 - Otherwise: bonus_grade = 0.25 * min(1, your_bonus / (0.8*max_bonus)).

Final Grade Calculation

Logistics

final_grade = round(exam_grade + bonus_grade)

Website Introduction

www.nilozer.com

Connectivity

La Articulation Points La Menger's Theorem 4 Bridges 4 Block - Decomposition

Cycles

Le Closed Eulerian Walk Le TSP Le Hamiltonian Cycle

Matchings

Le Definition Le Holl's Theorem 🗣 Algorithms

Colorings

🔶 Algorithm

4 Definition 4 Brooks's Theorem

Wahrscheinlichkeit

- 4 Grundbegriffe und Notationen
- 4 Bedingte Mahrscheinlichkeiten
- (+ Unabhängigkeiten
- 🗣 Zufallsvariablen
- 4 Dichtige Diskrete Verteilungen
- 🖙 Albschätzen von Wahrscheinlichkeiten

A&W Overview

& Final Algorithm

A&W Standpoint at ETH CS

- Algorithms Part
 - A&D (1. Semester)
 - APC (Algorithms , Probability and Computing) (5. Semester)
- Probability Part
 - WuS (Wahrscheinlichkeit und Statistik) (4. Semester)

Q)u
A	
V	V
k	(
	i
F	C
	i
1	

(i 7

3

[i

Finish attempt ...

uiz navigation

Igorithmen und Vahrscheinlichkeiten lausur

ormelsammlung

True/False Questions - Part 1

ļ	1	2	3	4	5	e
]	8	9	10]		

Algorithms - Part 2 i 11 12

Multiple Choice und Kurzantworten - Part

Block Multiple Choice - Part 4

i 18 19 20 21 22

Schriftliche Aufgaben

Java Documentation

Programming Exercises - Part 6

Quiz navigation

Algorithmen und Wahrscheinlichkeiten Klausur [i]

Formelsammlung

True/False Questions - Part 1 i 1 2 3 4 5 6 7 8 9 10

Algorithms - Part 2 i | 11 | 12 |

Multiple Choice und Kurzantworten - Part 3

Block Multiple Choice - Part 4 i 18 19 20 21 22

Schriftliche Aufgaben - Part 5

Java Documentation

Programming **Exercises - Part 6** i 23 24 Finish attempt .

6 Parts First 4 parts : each 10 points (similar to minitest)

Part 5: written tasks, 20 points in total (similar to theory exercises) Part 6: 2 programming tasks, each 10 points (similar to CodeEx)

Quiz navigation

Algorithmen und Wahrscheinlichkeiten Klausur [i]

Moodle

True/False Questions

Algorithms - Part 2 12

Multiple Choice und Kurzantworten - Part 3

Block Multiple Choice - Part 4

- Part 5

Written Theory

Programming

Schriftliche Aufgaben

Java Documentation

Programming **Exercises - Part 6**

Finish attempt ...

Kurzantworten - Part 3 13 14 15 16 17

Block Multiple Choice - Part 4 i 18 19 20 21 22

Ein Matching, für das es keinen augmentierenden Pfad gibt, ist inklusionsmaximal.

Select one:

True

False

Drei Ereignisse A, B, C heissen unabhängig genau dann wenn $Pr[A \cap B \cap C] = Pr[A] \cdot Pr[B] \cdot Pr[C]$.

Select one:

True

False

~1 points

True/False Questions - Part 1 3 | [4] 1 2 5 8 9 10

Algorithms - Part 2 11 12

Multiple Choice und **Kurzantworten - Part** 3 13 14 15 16 17 i

Block Multiple Choice - Part 4 i 18 19 20 21 22

Fluss fliesst)

~5 points

Sei N ein Netzwerk ohne entgegengesetzte Kanten. Betrachten Sie das abgebildete Restnetzwerk R_f. Berechnen Sie den zugehörigen Fluss f und ziehen Sie die Flusswerte auf die entsprechenden Kanten (verwenden Sie die 0 für Kanten, über die kein

				-	٠
•		-	0	٠	
	u			L	
			~	•	-

- \bigcirc M \cup G
- \bigcirc G \ M
- \bigcirc M \cup T

Mock Exam 2022

~5 points

True/False Questions - Part 1 i 7 8 9 10

Algorithms - Part 2 || 11 || 12 | i

Multiple Choice und **Kurzantworten - Part** 3 13 14 15 16 17 i

Block Multiple Choice - Part 4 i 18 19 20 21 22

Sei $\Omega = \{-3, -2, 0, 2,$ Answer:

Max wirft 10 faire Münze Wahrscheinlichkeit p vor Was ist die Wahrscheinli

○ ✓ 1 – (1 – (1 –

 $\odot \times 1 - p^{10}$

 \bigcirc × 5 · (1 – p)

 $1 \times 1 - (1 - p)^{10}/2$

~2 points

3} ein Laplaceraum und sei ω ein (zufälliges) Elementarereignis in Ω . Berechnen Sie	E[ω].
en. Leider hat er vergessen vorher das Fenster zu schliessen und jede seiner Münzen wird mit n einer Elster gestohlen (unabhängig von den anderen Münzen).	
ichkeit, dass Max wenigstens eine Münze, die Zahl zeigt, behält?	
p)/2) ¹⁰	S
	S
	5
2^{10}	5
	1

Mock Exam 2022

Moodle

True/False Questions

6

- Part 1

7 8 9 10

i

Algorithms - Part 2 i | 11 || 12 |

Multiple Choice und **Kurzantworten - Part** 3 13 14 15 16 17 i

Block Multiple Choice - Part 4 i 18 19 20 21 22

Seien A, B, C unabhängige Ereignisse. Welche der folgenden Gleichungen sind immer wahr?

Welche der folgenden Probleme können mithilfe von Ideen aus dem Kurs als Fluss-Probleme modelliert und gelöst werden?				
Richtig	Falsch			
	\odot ×	Herausfinden, ob ein bipartiter Graph G ein perfektes Matching hat.		
○ ×		Den längsten Pfad in einem Graph G finden.		
	\odot ×	Herausfinden, ob ein Graph G 2-Kanten-zusammenhängend ist.		
	\odot ×	Herausfinden, ob ein Graph G 2-Knoten-zusammenhängend ist.		

 $\Pr[A \cap B] = \Pr[A] \cdot \Pr[B]$

 $\Pr[A] + \Pr[B] \le \Pr[A \cup B]$

 $\Pr[A|B \cap C] = \Pr[A|B \cup C]$

 $Pr[(A \cup B) \cap C] = (Pr[A] + Pr[B]) \cdot Pr[C]$

Written Theory

Schriftliche Aufgaben - Part 5

jeweils 4 Punkte

on paper

Mock Exam 2022

- Zeigen/Widerlegen Sie folgende Aussagen
- a) Sei $G = (A \cup B, E)$ ein regul"arer bipartiter Graph mit $E \neq \emptyset$. Dann ist |A| = |B|.
- b) Seien X und Y unabh"angige Zufallsvariablen. Dann gilt $\mathbb{E}[\max(X, Y)] = \max(\mathbb{E}[X], \mathbb{E}[Y])$
- c) Sei v ein Knoten, der inzident zu mindestens zwei Brücken ist. Dann ist u ein Artikulationsknoten.

Programming

Java Documentation i

Programming **Exercises - Part 6** 23 24

Finish attempt ...

• One probability task • One flow task

~10 points each

Written Theory

Programming

Point Distribution

based on mock exam

Moodle

Point Distribution + Weekly Exercises

	Warm up exercise	
Mini Quiz	Theory Exercise	Programming Exercise
	Peer Grading Exercise	Programming Exercise
Mini Quiz	Theory Exercise	Programming Exercise
	Peer Grading Exercise	Programming Exercise
Mini Quiz	Theory Exercise	Programming Exercise
	Peer Grading Exercise	Programming Exercise

Point Distribution + Weekly Exercises

Moodle	Written + Moodle	Programming
	Warm up exercise	
Mini Quiz	Theory Exercise	Programming Exercise
	Peer Grading Exercise	Programming Exercise
Mini Quiz	Theory Exercise	Programming Exercise
	Peer Grading Exercise	Programming Exercise
Mini Quiz	Theory Exercise	Programming Exercise
	Peer Grading Exercise	Programming Exercise

got you!

How to study for A&W **During Semester**

- Attend all lectures !
- Skript ! Some recap parts from A&D in the beginning
- Always come to the exercise session. Even if you fall back !
- Try to solve all exercises (of all types) Coding weekly !
- Ask questions ! exercise session , breaks, WhatsApp group, email , Moodle forum
- Summaries, Recaps
- Feedback Feedback pools by me or contacting me directly

Join the whatsapp group!

Let's take a break

A&W 😊 🚔 WhatsApp group

Aufgabe 1 – Pfade, Wege, Kreise

Betrachten Sie folgenden Graphen G = (V, E).

- 3. Welche Kreise gibt es in G?
- 4. Wie viele Zykeln gibt es in G?

Warm up Exercise Sheet

1. Welche Pfade der Länge 4 (d.h. mit 4 Kanten) gibt es von a nach e? 2. Welche Wege der Länge 4 (d.h. mit 4 Kanten) gibt es von a nach e?

Recap Walk vs Path

- Walk A sequence of vertices (v_0, v_1, \ldots, v_k) (with $v_i \in V$ for all i) is a walk (german "Weg") if $\{v_i, v_{i+1}\}$ is an edge for each $0 \le i \le k-1$. We say that v_0 and v_k are the **endpoints** (german "Startknoten" and "Endknoten") of the walk. The **length** of the walk (v_0, v_1, \ldots, v_k) is k.
- path are distinct (i.e., $v_i \neq v_j$ for $0 \leq i < j \leq k$).

Is it a walk? Is it a path?

• A sequence of vertices (v_0, v_1, \ldots, v_k) is a **path** (german "Pfad") if it is a walk and all vertices

Exercise 1 : Paths, Walks, Circles

Paths of length 4 (i.e. with 4 edges) from a to e?

Exercise 1 : Paths, Walks, Circles

Paths of length 4 (i.e. with 4 edges) from a to e?

<a,b,c,f,e>

Exercise 1 : Paths, Walks, Circles

Walks of length 4 (i.e. with 4 edges) from a to e?

Walks of length 4 (i.e. with 4 edges) from a to e?

<a,b,c,f,e>, <a,b,c,b,e>, <a,b,e,d,e>, <a,b,e,f,e>, <a,b,e,b,e>, <a,b,a,b,e>, <a, b,</pre> a,d,e>, <a,d,a,d,e>, <a,d,a,b,e>, <a,d,e,d,e>, <a,d,e,b,e>, <a,d,e,f,e>

Exercise 1 : Paths, Walks, Circles

Recap **Closed Walk vs Cycle**

- Closed walk
- and $v_0 = v_k$.
- Cycle and all vertices (except v_0 and v_k) are distinct.

• A sequence of vertices (v_0, v_1, \dots, v_k) is a **closed walk** (german "Zyklus") if it is a walk, $k \ge 2$

• A sequence of vertices (v_0, v_1, \ldots, v_k) is a **cycle** (german "Kreis") if it is a closed walk, $k \ge 3$

Exercise 1 : Paths, Walks, Circles

Cycles in G?

Cycles in G?

Exercise 1 : Paths, Walks, Circles

- <a,b,d,e,a>, <b,c,f,e,b> and <a,b,c,f,e,d,a>
- + changing the starting points !

Exercise 1 : Paths, Walks, Circles

Closed Walks in G?

Closed Walks in G?

Infinitely many

Exercise 1 : Paths, Walks, Circles

Warm up Exercise Sheet Exercise 2 : Asymptotic Growth

$\label{eq:abelian} Aufgabe\ 2-Asymptotisches\ Wachstum.$

(a) (Leicht.) Sortieren Sie die folgenden Funktionen asymptotisch, d.h. entsprechend der *O*-Notation. Dabei bezeichnet $\log n$ den Logarithmus zur Basis 2, und $\ln n$ den natürlichen Logarithmus. In welchen Fällen haben Sie asymptotische Gleichheit $\Theta(.)$?

$$n, \quad 0.01n^2, \quad e^n, \quad \log n, \quad 2^{32}, \quad 2^n, \quad n + \sqrt{n},$$

(b) (Schwerer.) Sortieren Sie zusätzlich die folgenden Funktionen in Ihre Abfolge ein.

$$\ln n, \quad \frac{n}{\log n},$$

$$e^{\sqrt{\log n}}, \quad \log(n^2), \quad n^{1/4}, \quad n!$$

Recap Mini cheat-sheet

$$\lim_{n \to \infty} \left\{ \frac{1}{\sqrt{2}} \right\} < \log(\log(n)) < \log(n) < \ln < n < n \cdot \log(n) < n \cdot \ln < n^{2} < 2^{n} < n < n < \sqrt{2} < \frac{1}{\sqrt{2}} < \frac{1$$

$$\begin{split} \sum_{i=1}^n i &= 1+2+3+\dots+n = \frac{n(n+1)}{2} \\ \sum_{i=1}^n i^2 &= 1^2+2^2+3^2+\dots n^2 = \frac{n(n+1)(2n+1)}{6} \\ \text{Geometric series}: \ \sum_{k=0}^n q^k &= \frac{q^{n+1}-1}{q-1} \\ \\ \sum_{k=0}^3 3^k &= 3^0+3^1+3^2+3^3 = \frac{3^4-1}{3-1} = 40 \end{split}$$

Theorem 1 (Theorem 1.1 from the script). Let N be an infinite subset of \mathbb{N} and $f : N \to \mathbb{R}^+$ and $g: N \to \mathbb{R}^+.$

• If $\lim_{n\to\infty} \frac{f(n)}{g(n)} = \infty$, then $f \ge \Omega(g)$, but $f \ne \Theta(g)$.

Factorial

$$rac{n}{2}^{rac{n}{2}} \leq n! \leq n^n$$

From Exercise Sheet 1:

$$\begin{split} \sum_{i=1}^{n} i^{k} &\leq n^{k+1} & \prod_{i=1}^{n} i^{k} \leq n^{k+1} \\ \sum_{i=1}^{n} \overline{i^{k}} &\geq \frac{1}{2^{k+1}} \cdot n^{k+1} & i = 0 \end{split}$$

Warm up Exercise Sheet Exercise 3 : Induction

Aufgabe 3 - Induktion

(a) Zeigen Sie für alle $n \in \mathbb{N}$:

$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \dots + \frac{1}{n\cdot (n+1)} = \frac{n}{n+1}.$$

(b) Zeigen Sie die folgende Ungleichung von Bernoulli: Für alle natürlichen Zahlen $n \ge 1$ und alle $h \in \mathbb{R}$ mit $h \ge -1$ gilt: $1 + mh \le (1 + h)^n$

 $1 + nh \le (1+h)^n.$

Exercise 4 : A General Feature of Graphs

Aufgabe 4 – Eine generelle Eigenschaft von Graphen

Zeigen Sie, dass jeder Graph G mit $n \ge 2$ Knoten zwei Knoten $v \ne w$ enthält, sodass deg(v) = deg(w).

Hinweis: Für ein gegebenes n, was ist der grösstmögliche Grad den ein Knoten haben kann?

Warm up Exercise Sheet Exercise 5 : Algorithms

Aufgabe 5 – Algorithmus

Beschreiben Sie einen Algorithmus der das folgende Problem löst: Gegeben ist die Eingabe bestehend aus einen Graphen G = (V, E) mit *n* Knoten (gehen Sie davon aus, dass der Graph als Adjazenzliste gegeben ist). Ihr Algorithmus soll "Ja" ausgeben, falls *G* ein Baum ist und "Nein" andernfalls.

Wie immer wenn Sie einen Algorithmus beschreiben gehöhrt zu einer vollständigen Lösung: eine klare Beschreibung des Algorithmus, ein Korrektheitsbeweis und eine Laufzeitanalyse.

Hinweis: Für diese Aufgabe dürfen Sie das Statement aus Aufgabe 6 ohne Beweis verwenden.

Questions Feedbacks, Recommendations

