JTJ - Exercise Sheet Question

Exercise 10.2 Depth-first search (1 point).

Execute a depth-first search (*Tiefensuche*) on the following graph. Use the algorithm presented in the lecture. Always do the calls to the function "visit" in alphabetical order, i.e. start the depth-first search from A and once "visit(A)" is finished, process the next unmarked vertex in alphabetical order. When processing the neighbors of a vertex, also process them in alphabetical order.

(a) Mark the edges that belong to the depth-first forest (*Tiefensuchwald*) with a "T" (for tree edge).

Solution:

In the following, both the solution to subtask (a) and the solution to subtask (d) are showed.

(b) For each vertex in the depth-first forest, give its *pre-* and *post-*number.

Solution:

A(1,16) B(5,6) C(2,13) D(3,8) E(4,7) F(14,15) G(9,12) H(10,11) I(17,18).

(c) Give the vertex ordering that results from sorting the vertices by pre-number. Give the vertex ordering that results from sorting the vertices by post-number.

Solution:

Pre-ordering: A, C, D, E, B, G, H, F, I.

Post-ordering: B, E, D, H, G, C, F, A, I.

(d) Mark every forward edge (Vorwärtskante) with an "F", every backward edge (Rückwärtskante) with a "B", and every cross edge (Querkante) with a "C".

Solution:

See above in the solution to part (a).

(e) Does the above graph have a topological ordering? If yes, write down the topological ordering we get from the above execution of depth-first search; if no, argue how we can use the above execution of depth-first search to find a directed cycle.

Solution:

The decreasing order of the post-numbers gives a topological ordering whenever the graph is acyclic. This is the case if and only if there are no back edges. If there is a back edge, then together with the tree edges between its end points it forms a directed cycle. In our graph, the only back edge is B \rightarrow A, and the tree edges from A to B are A \rightarrow C, C \rightarrow D, D \rightarrow E and E \rightarrow B. Together they form the directed cycle $(A \rightarrow C \rightarrow D \rightarrow E \rightarrow B \rightarrow A)$.

(f) Draw a scale from 1 to 18, and mark for every vertex v the interval I_v from pre-number to postnumber of v. What does it mean if $I_u \subset I_v$ for two different vertices u and v?

Solution:

If $I_u \subset I_v$ for two different vertices u and v, then u is visited during the call of visit(v).

(g) Consider the graph above where the edge from B to A is removed and an edge from F to I is added. How does the execution of depth-first search change? Does the graph have a topological ordering? If yes, write down the topological ordering we get from the execution of depth-first search; if no, argue how we can use the execution of depth-first search to find a directed cycle. If you sort the vertices by *pre-number*, does this give a topological sorting?

Solution:

The execution of the depth-first search only changes in the last step, where I is visited from F instead of starting the call of "visit(I)" after completing "visit(A)".

This gives the following post-ordering: B, E, D, H, G, C, I, F, A. Since the graph has no back edges anymore, it has a topological ordering. The topological ordering we get from the execution of the depth-first search (reversed post-ordering) is: A, F, I, C, G, H, D, E, B.

The pre-ordering is A, C, D, E, B, G, H, F, I; it does not give a topological ordering, since there is for example the edge (G, B) in the graph.

Definition 1. Let G = (V, E) be a graph.

itior

- For $v \in V$, the **degree** $\deg(v)$ of v (german "Knotengrad") is the number of edges that are incident to v.
- A sequence of vertices (v_0, v_1, \ldots, v_k) (with $v_i \in V$ for all *i*) is a **walk** (german "Weg") if $\{v_i, v_{i+1}\}$ is an edge for each $0 \le i \le k 1$. We say that v_0 and v_k are the **endpoints** (german "Startknoten" and "Endknoten") of the walk. The **length** of the walk (v_0, v_1, \ldots, v_k) is k.
- A sequence of vertices (v₀, v₁,..., v_k) is a closed walk (german "Zyklus") if it is a walk, k ≥ 2 and v₀ = v_k.
- A sequence of vertices (v₀, v₁,..., v_k) is a **path** (german "Pfad") if it is a walk and all vertices are distinct (i.e., v_i ≠ v_j for 0 ≤ i < j ≤ k).
- A sequence of vertices (v₀, v₁,..., v_k) is a cycle (german "Kreis") if it is a closed walk, k ≥ 3 and all vertices (except v₀ and v_k) are distinct.
- A Eulerian walk (german "Eulerweg") is a walk that contains every edge exactly once.
- A closed Eulerian walk (german "Eulerzyklus") is a closed walk that contains every edge exactly once.
- A Hamiltonian path (german "Hamiltonpfad") is a path that contains every vertex.
- A Hamiltonian cycle (german "Hamiltonkreis") is a cycle that contains every vertex.
- For $u, v \in V$, we say u reaches v (or v is reachable from u; german "u erreicht v") if there exists a walk with endpoints u and v.
- A connected component of G is an equivalence class of the (equivalence) relation defined as follows: Two vertices $u, v \in V$ are equivalent if u reaches v.
- A graph G is **connected** (german "zusammenhängend") if for every two vertices $u, v \in V u$ reaches v or equivalently if there is only one connected component.
- A graph G is a **tree** (german "Baum") if it is connected and has no cycles.

initions - Graph Quiz (exam question)

/ **5** P c) Graph quiz: For each of the following claims, state whether it is true or false. You get 1P for a correct answer, -1P for a wrong answer, 0P for a missing answer. You get at least 0 points in total.

As a reminder, here are a few definitions for a (directed) graph G = (V, E):

For $k \geq 2$, a (directed) walk is a sequence of vertices v_1, \ldots, v_k such that for every two consecutive vertices v_i, v_{i+1} , we have $\{v_i, v_{i+1}\} \in E$ (resp. $(v_i, v_{i+1}) \in E$ for a directed walk).

A (directed) closed walk is a (directed) walk with $v_1 = v_k$.

moh

A (directed) cycle is a (directed) closed walk where $k \ge 3$ and all vertices (except v_1 and v_k) are distinct.

A (directed) closed Eulerian walk is a (directed) closed walk which traverses every edge in E exactly once.

For a vertex v in a directed graph G = (V, E), the *in-degree* of v is the number of edges in E that end in v (i.e., of the form (w, v)), and the *out-degree* of v is the number of edges in E that start in v (i.e., of the form (v, w)).

Claim	true	false
A connected graph must contain a cycle.		
A graph $G = (V, E)$ with $ E \le V - 1$ is a tree.		
Let $G = (V, E)$ be a graph with $ E \ge 4$, which contains a closed Eulerian walk. If we remove one edge from E , the resulting graph does not contain a closed Eulerian walk, no matter which edge we remove (the vertex set does not change).		
Let $G = (V, E)$ be a <i>directed</i> graph. If the in-degree and out-degree of every vertex $v \in V$ is even, then G contains a <i>directed</i> closed Eulerian walk.		

		Justification
A connected graph must contain a cycle.	False	Counterex.: Tree, •v,
A graph $G = (V, E)$ with $ E \le V - 1$ is a tree.	False	Counterex. : • • , 🛆 •

	CA /7.7	TT) 1						1.73																					
Let	G = (V,	E) be a	graph w	with $ E $	≥ 4 , wh	ich cont	tains a cl	losed Eu	lerian w	alk.																			
If v	ve remove	e one ed _l	ge from .	E, the :	resulting	; graph o	does not	contain	a closed	1	T									0	2								
Eul	erian wa	k, no m	atter wh	nich edg	e we rer	nove (th	e vertex	set does	not cha	ange).	11	rue			Rem	nve	anu	ed	ne	20	. V 4								
	1													_	 	UIC.		000	7		1 4 3							_	
															dea	ເພ	and	h t	ea(\mathcal{O}	will	de	ecre	ase	: 6	υd	one	.	
)			$\overline{)}$						1	J			
																-			Ŭ							Even	1	به برمه	<u> </u>
															Initi	dlu -	Gcc	mair	hor	0.0	loser	1 eu	lein	. 11.1	2	had		ion ii	14
-	-				-									_	 ture the second se	my	4 00	111000						ω.	~	nad	-EVEI	- degn	æ
																												<u> </u>	
															daa	م دياء	md -	loo (v	0	a									
															 acd	$(\mathbf{u}) \mathbf{o}$		equ	1 00		G								
															J J			U U											
																unali and	North 1	Innin		100	-	G	-o'L	a a a a b				دسلعب	an
	_										 			_	 PWL 1	UNITICE	SODUT	nave	CUSI	aed	-	9 C	T IID	COIN	un d		990	WOW	-
																				9									
														_							_			-					
Lot C .	-(V F)	ha a di	rooted a	roph I	f tho in	dogroo	and out	dorroo				L .									2.								
Let G	-(v, E)	De a ui	recieu g	graph, i	n une m	-uegree	and out	-uegree			1	Cale	0		Can	e de la com	_				- A.								
of ever	y vertex	$v \in V$ i	s even,	then G	^c ontai	ns a <i>dir</i> i	ected clo	osed Eu	lerian w	valk		r Ulic	X			ruer	ex.	1. I.		<u> </u>	\mathbf{C}		<u> </u>	11	7				

2,6,7,5,3,4,2

Exam Questions

/ 2 P

i) Draw the depth-first tree resulting from a depth-first search starting from vertex 1. Process the neighbors of a vertex in increasing order.

ii) Write out two edges e_1, e_2 such that the directed graph above has a topological ordering after removing e_1 and e_2 (the vertex set does not change).

/ 2 P d) Depth-first search: Consider the following directed graph:

i) Draw the depth-first tree resulting from a depth-first search starting from vertex 1. Process the neighbors of a vertex in increasing order.

 \cap

1

3

L

2

5

ii) Write out all the cross edges and all the back edges (specify which ones are cross edges, and which ones are back edges).

Topological Sorting - Exam Question

/ **3** P d) Directed Acyclic Tournament

A *tournament* is a directed graph G = (V, E) such that:

- G has no self loops, i.e., $(v, v) \notin E$, for all $v \in V$. (Note that the graphs that we usually consider have no self loops.)
- For every two distinct vertices $u, v \in V$, either $(u, v) \in E$ or $(v, u) \in E$ but not both.

Let G be a directed acyclic graph that is also a tournament. Show that G has a unique topological sorting.

Since G is a DAG, it has at least one top sorting $(V_1, ..., V_n)$ G is also a tournament \Rightarrow For all i $1 \le i < n$ either $(V_i, V_{i+1}) \in E$ or (V_{i+1}, V_i) (but not both)

Since $(v_1 \dots v_n)$ is a top. sorting, the edge between v_i and v_{i+1} must be $(v_{i+1}v_{i+1})$. (It cannot be (v_{i+1}, v_i))

(V1, ..., Vn) is a path in G

vi is before vit, in any top. sorting

(V1, ..., Vn) is the unique top. sorting

