Graph Definitions- Short Proofs

 $G = (V, E)$
 $w. \quad T \neq F$ Let $v \neq w \in V$. if there is a walk with endpoints v and w, then there is a path with endpoints v and w. $\top / \models \bigcirc$ Proof ?

True

- \exists walk W with endpoints v and ψ
- If all vertices in W are distinct, W is already a path
- If ^W contains repeated vertices , remove the cycles and vertices, remove the cycles
 e°
 \rightarrow s in W are distinct,
ins repeated vertices,
entitles,

(to obtain a

If there exists a aucle V_{i-1} , V_{i} , V_{i+1} , ..., V_i , V_j , V_j , V_j ,

 \sim \sim \sim \sim \sim

Remove the vertices v_{i+t} .

 $V_i + 1 V_i + V_j + V_j + 1$

Repeat this for every remaining repeated vertices

After removing all cycles, remaining walk will be a path I has distinct vertices + still connects vtow)

False

 G has to contain a gycle

~

(e) Suppose in a graph G every pair of vertices v, w has a common neighbour (i.e., for all distinct vertices v, w, there is a vertex x such that $\{v, x\}$ and $\{w, x\}$ are both edges). Then there exists a vertex p in G which is a neighbour of every other vertex in G (i.e., p has degree $n-1$).

