

A&D Overview

- Quiz
- Exercise Sheets

- Graph Definitions
- Short Proofs
- Exam Question

Next week

Outline

Mid Semester Feedback

Exercise Sheets

• Exercise Sheet 6 feedback left for next time

- Exercise Sheet 7 peergrading
 - 7.5 this week
 - Emails will be sent

New groups for Exercise Sheet 7,8 and 9 !

G = (V, E)

Graph Node / Vertex

G = (V, E)

$$E$$
) $V = \{v_1, ..., v_n\}, |V| = n$ the set of no

1

G = (V, E) · $E = \{e_1, ..., e_m\}, |E| = m$ the set of edges

Graph **Undirected / Directed Graph**

 $G = (V, E)^{\perp}$ $E = \{e_1, ..., e_m\}, |E| = m$ the set of edges

Graph adjacent / incident

- v_i and v_j are adjacent iff : $\{v_i\}$
- v_i and e_k are incident iff : v_i

$\{v_i, v_j\} \in E \qquad (v_i, v_j) \in E$

 $v_i \in e_k$

- deg(v) : The degree of a vertex v of a graph is the number of edges incident to this vertex, with loops counted twice.
- In directed graphs:
 - in-degree deg⁻(v)
 - out-degree deg⁺(v)

- deg(v) : The degree of a vertex v of a graph is the number of edges incident to this vertex, with loops counted twice.
- In directed graphs:
 - in-degree deg⁻(v)
 - out-degree deg⁺(v)

- deg(v) : The degree of a vertex v of a graph is the number of edges incident to this vertex, with loops counted twice.
- In directed graphs:
 - in-degree deg⁻(v)
 - out-degree deg⁺(v)

- deg(v) : The degree of a vertex v of a graph is the number of edges incident to this vertex, with loops counted twice.
- In directed graphs:
 - in-degree deg⁻(v)
 - out-degree deg⁺(v)

Graph Walk vs Path

- Walk A sequence of vertices (v_0, v_1, \ldots, v_k) (with $v_i \in V$ for all i) is a walk (german "Weg") if $\{v_i, v_{i+1}\}$ is an edge for each $0 \le i \le k-1$. We say that v_0 and v_k are the **endpoints** (german "Startknoten" and "Endknoten") of the walk. The **length** of the walk (v_0, v_1, \ldots, v_k) is k.
- path are distinct (i.e., $v_i \neq v_j$ for $0 \leq i < j \leq k$).

Is it a walk? Is it a path?

• A sequence of vertices (v_0, v_1, \ldots, v_k) is a **path** (german "Pfad") if it is a walk and all vertices

Graph **Closed Walk vs Cycle**

- Closed walk
- and $v_0 = v_k$.
- Cycle and all vertices (except v_0 and v_k) are distinct.

• A sequence of vertices (v_0, v_1, \dots, v_k) is a **closed walk** (german "Zyklus") if it is a walk, $k \ge 2$

• A sequence of vertices (v_0, v_1, \ldots, v_k) is a **cycle** (german "Kreis") if it is a closed walk, $k \ge 3$

Graph **Eulerian Walk / Closed Eulerian Walk**

Eulerian Walk

Closed Eulerian Walk once.

- A sequence of vertices (v_0, v_1, \ldots, v_k) (with $v_i \in V$ for all i) is a walk (german "Weg") if $\{v_i, v_{i+1}\}$ is an edge for each $0 \le i \le k-1$. We say that v_0 and v_k are the **endpoints** (german "Startknoten" and "Endknoten") of the walk. The **length** of the walk (v_0, v_1, \ldots, v_k) is k.
- A sequence of vertices (v_0, v_1, \ldots, v_k) is a **closed walk** (german "Zyklus") if it is a walk, $k \ge 2$ and $v_0 = v_k$.

• A Eulerian walk (german "Eulerweg") is a walk that contains every edge exactly once.

• A closed Eulerian walk (german "Eulerzyklus") is a closed walk that contains every edge exactly

Graph **Eulerian Walk / Closed Eulerian Walk**

Eulerian Walk

Closed Eulerian Walk once.

Is there a closed eulerian walk?

- A sequence of vertices (v_0, v_1, \ldots, v_k) (with $v_i \in V$ for all i) is a walk (german "Weg") if $\{v_i, v_{i+1}\}$ is an edge for each $0 \le i \le k-1$. We say that v_0 and v_k are the **endpoints** (german "Startknoten" and "Endknoten") of the walk. The **length** of the walk (v_0, v_1, \ldots, v_k) is k.
- A sequence of vertices (v_0, v_1, \ldots, v_k) is a **closed walk** (german "Zyklus") if it is a walk, $k \ge 2$ and $v_0 = v_k$.

• A Eulerian walk (german "Eulerweg") is a walk that contains every edge exactly once.

• A closed Eulerian walk (german "Eulerzyklus") is a closed walk that contains every edge exactly

Graph Hamiltonian Path / Hamiltonian Cycle

Hamiltonian Path

Hamiltonian Cycle

Is it a hamiltonian path? Is it a hamiltonian cycle?

- A sequence of vertices (v_0, v_1, \ldots, v_k) is a **path** (german "Pfad") if it is a walk and are distinct (i.e., $v_i \neq v_j$ for $0 \leq i < j \leq k$).
- A sequence of vertices (v_0, v_1, \ldots, v_k) is a **cycle** (german "Kreis") if it is a closed w and all vertices (except v_0 and v_k) are distinct.

• A Hamiltonian path (german "Hamiltonpfad") is a path that contains every vertex.

• A Hamiltonian cycle (german "Hamiltonkreis") is a cycle that contains every vertex.

l all	vertices			
zalk,	k	\geq	3	

Graph Connectivity

- a walk with endpoints u and v.
- follows: Two vertices $u, v \in V$ are equivalent if u reaches v.
- reaches v or equivalently if there is only one connected component.

• For $u, v \in V$, we say u reaches v (or v is reachable from u; german "u erreicht v") if there exists

• A **connected component** of G is an equivalence class of the (equivalence) relation defined as

• A graph G is **connected** (german "zusammenhängend") if for every two vertices $u, v \in V u$

Graph Connectivity

- a walk with endpoints u and v.
- follows: Two vertices $u, v \in V$ are equivalent if u reaches v.
- reaches v or equivalently if there is only one connected component.

• For $u, v \in V$, we say u reaches v (or v is reachable from u; german "u erreicht v") if there exists

• A **connected component** of G is an equivalence class of the (equivalence) relation defined as

• A graph G is connected (german "zusammenhängend") if for every two vertices $u, v \in V u$

• A graph G is a **tree** (german "Baum") if it is connected and has no cycles.

A connected graph is a tree iff it has exactly m= n-1 edges.

Graph Handshaking Lemma

$\sum_{v \in V} \deg(v) = 2|E| = 2m$

Graph **Eulerian Lemmas**

• A Eulerian walk (german "Eulerweg") is a walk that contains every edge exactly once.

once.

Herian Walk

3 Eulerian Closed Walk

• A closed Eulerian walk (german "Eulerzyklus") is a closed walk that contains every edge exactly

<= 2 vertices have odd degree (start and end)

Ausser für Start- und Endknoten gilt : #hin = #weg

G is connected and every vertex has even degree

Graph Definitions

Definition 1. Let G = (V, E) be a graph.

- to v.
- and $v_0 = v_k$.
- are distinct (i.e., $v_i \neq v_j$ for $0 \leq i < j \leq k$).
- and all vertices (except v_0 and v_k) are distinct.
- once.

- a walk with endpoints u and v.
- follows: Two vertices $u, v \in V$ are equivalent if u reaches v.
- reaches v or equivalently if there is only one connected component.
- A graph G is a tree (german "Baum") if it is connected and has no cycles.

• For $v \in V$, the **degree** deg(v) of v (german "Knotengrad") is the number of edges that are incident

• A sequence of vertices (v_0, v_1, \ldots, v_k) (with $v_i \in V$ for all i) is a walk (german "Weg") if $\{v_i, v_{i+1}\}$ is an edge for each $0 \le i \le k-1$. We say that v_0 and v_k are the **endpoints** (german "Startknoten" and "Endknoten") of the walk. The **length** of the walk (v_0, v_1, \ldots, v_k) is k.

• A sequence of vertices (v_0, v_1, \ldots, v_k) is a **closed walk** (german "Zyklus") if it is a walk, $k \ge 2$

• A sequence of vertices (v_0, v_1, \ldots, v_k) is a **path** (german "Pfad") if it is a walk and all vertices

• A sequence of vertices (v_0, v_1, \ldots, v_k) is a cycle (german "Kreis") if it is a closed walk, $k \geq 3$

• A Eulerian walk (german "Eulerweg") is a walk that contains every edge exactly once.

• A closed Eulerian walk (german "Eulerzyklus") is a closed walk that contains every edge exactly

• A Hamiltonian path (german "Hamiltonpfad") is a path that contains every vertex.

• A Hamiltonian cycle (german "Hamiltonkreis") is a cycle that contains every vertex.

• For $u, v \in V$, we say u reaches v (or v is reachable from u; german "u erreicht v") if there exists

• A connected component of G is an equivalence class of the (equivalence) relation defined as

• A graph G is **connected** (german "zusammenhängend") if for every two vertices $u, v \in V u$

Let's take a break

Graph **Short Proofs**

Exercise 8.5

endpoints v and w.

For each of the following statements, decide whether the statement is true or false. If the statement is true, provide a proof; if it is false, provide a counterexample.

- (b) Every graph with $m \ge n$ is connected.
- (c) If G contains a Hamiltonian path, then G contains a Eulerian walk.

- a vertex v means that we remove v and any edge containing v from the graph).

Short questions about graphs (2 points). In the following, let G = (V, E) be a graph, n = |V| and m = |E|.

(a) Let $v \neq w \in V$. Prove that if there is a walk with endpoints v and w, then there is a path with

(d) If every vertex of a non-empty graph G has degree at least 2, then G contains a cycle.

(e) Suppose in a graph G every pair of vertices v, w has a common neighbour (i.e., for all distinct vertices v, w, there is a vertex x such that $\{v, x\}$ and $\{w, x\}$ are both edges). Then there exists a vertex p in G which is a neighbour of every other vertex in G (i.e., p has degree n - 1).

(f) Let G be a connected graph with at least 3 vertices. Suppose there exists a vertex v_{cut} in G so that after deleting v_{cut} , G is no longer connected. Then G does not have a Hamiltonian cycle. (Deleting

Graph **Exam Question**

c) in total.

/ 5 P

For $k \geq 2$, a (directed) walk is a sequence of vertices v_1, \ldots, v_k such that for every two consecutive vertices v_i, v_{i+1} , we have $\{v_i, v_{i+1}\} \in E$ (resp. $(v_i, v_{i+1}) \in E$ for a directed walk).

are distinct.

exactly once.

Claim	true	false
A connected graph must contain a cycle.		
A graph $G = (V, E)$ with $ E \le V - 1$ is a tree.		
Let $G = (V, E)$ be a graph with $ E \ge 4$, which contains a closed Eulerian walk. If we remove one edge from E , the resulting graph does not contain a closed Eulerian walk, no matter which edge we remove (the vertex set does not change).		
Let $G = (V, E)$ be a <i>directed</i> graph. If the in-degree and out-degree of every vertex $v \in V$ is even, then G contains a <i>directed</i> closed Eulerian walk.		
Let $G = (V, E)$ be an undirected graph. Then there is a way to direct the edges of G such that the resulting directed graph does not contain a directed cycle.		

Graph quiz: For each of the following claims, state whether it is true or false. You get 1P for a correct answer, -1P for a wrong answer, 0P for a missing answer. You get at least 0 points

As a reminder, here are a few definitions for a (directed) graph G = (V, E):

A (directed) *closed walk* is a (directed) walk with $v_1 = v_k$.

A (directed) cycle is a (directed) closed walk where $k \geq 3$ and all vertices (except v_1 and v_k)

A (directed) closed Eulerian walk is a (directed) closed walk which traverses every edge in E

For a vertex v in a directed graph G = (V, E), the *in-degree* of v is the number of edges in E that end in v (i.e., of the form (w, v)), and the *out-degree* of v is the number of edges in Ethat start in v (i.e., of the form (v, w)).

Graph Definitions Exam Tipps

- T/F or a proof !
- Know all of the definitions
 - Don't mix up similar ones, realise connections!
 - walk, closed walk, eulerian
 - path , cycle, hamiltonian
- Gain an intuition
 - Don't rush ! Don't gamble !
 - Do this by actually coming up with short proofs !
- Practice !

Questions Feedbacks, Recommendations

Additional Slides Euler(G)

Euler (G): (finde Eulerzyklus in Gwennexistent) - Leere Liste Z, alle Kanten unmarkiert - Euler Walk (uo) für u. 6V beliebig - return Z Euler Walk (u): auch nicht in Rekursion for nrEE hicht markiert markiere Kante uv Euler Walk (V) $Z \leftarrow (Z,u)$

