
A&D

Nil Ozer

Exercise Session 7

A&D Overview

Outline
• Quiz

• Exercise Sheets

• DP I - Edit Distance

• DP II

• DP Mock Exam

• Next week

Quiz

Exercise Sheet 5

• 5.1

• “Attention mistakes” won’t be tolerated in exam

• 5.3

• Don’t forget to refer to the pseudocode !

• Is it 0 or Θ !!

• 5.4

• Tree Proofs structure

• Feel free to correct me !

Bonus Feedback

Tree Proofs

• Base Case

• Usually leaves !

• I.H.

• Assume the property for some n

• I.S.

• Show what happens to n in one iteration (assuming I.H.) , describe briefly

• How does the recursion/iteration end ?

• arriving to the leaf , root

• fulfilling an if condition

General Structure

Exercise Sheets

• Exercise Sheet 4 left for next time, again :(

• Exercise Sheet 6 peergrading

• 6.1 this week

• Emails are sent

• New groups for Exercise Sheet 7 !

DP I

Edit Distance
Problem : Given two strings A and B, find the minimum number of edits
(operations) to convert A into B

Examples :

“cat" and “cut”

“sunday” and “saturday”

Inputs : Output : Operations :

1 replace a with u

3 convert un to atur :

replace n by r insert a, insert t

Operations :

Insert : Insert any character into A

Remove : Remove a character of A

Replace : Replace a character at any index of A with some other character

Edit Distance

Definition of the DP table :
Computation of an entry :

Initialization :
Recursion :

Extracting the solution :

DP[i][j] = ED of A[0..i] and B[0..j]

Idea : For every element of A , 3 things can happen

The solution is at DP[n][m]

DP[0][j] = j

DP[i][j] =
replace A[i] with B[j]delete A[i]

• will be deleted
• B[j] gets inserted after
• will be replaced to match B[j]

DP[i][0] = i

DP[0…n][0…m]

DP[i-1][j-1] if A[i] == B[j]

else
add B[j] to the end

Insert : Insert any character after or before any index of A

Remove : Remove a character of A

Replace : Replace a character at any index of A with some other characterOperations:

1 + min { DP[i-1][j], DP[i][j-1], DP[i-1][j-1]}

the minimum number of edits to convert A[0..i] into B[0..j]

Subset Sum
Problem : Given an array A , check if there’s a subset of A s.t. it’s sum is equal to
a given number b.

Examples :

[1,2,3,4,5] , 1000

Inputs : Output :

False

what’s used

True 2,3,5 or 1,2,3,4[1,2,3,4,5] , 10

[] , 0 True

Return true if we find I else false

Subset Sum

Definition of the DP table :
Computation of an entry :

Initialization :

Recursion :

Extracting the solution :

DP[i][s] = “Can I find a subset sum from A[0…i] that’s equal to s “

Idea : Two things can happen to each element
• It gets used in I

• It doesn’t get used in I

The solution is at DP[n][S]

DP[0][s] = False

DP[i][s] =

DP[i][0] = True

DP[i-1][s] || DP[i-1][s-A[i]]

we use i in I

DP[0][0] = True

we don’t use i in I

DP[0…n][0…S]

Knapsack
Problem :

Examples : Inputs : Output : Explanation :

0 all items are above weight limit

Given : Searched : Maximum profit that one can have

3 we can only pick one item,
and we pick the most profitable

5 we can pick two items,
and we pick 2+3 = 5

Knapsack

Definition of the DP table :
Computation of an entry :

Initialization :

Recursion :

Extracting the solution :

DP[i][w] = “Maximum profit from A[0..i] with weight limit w“

Idea : Two things can happen to each element
• We use it and get profit

• We don’t use it

The solution is at DP[n][W]

DP[i][w] =

DP[i][0] = 0

DP[i-1][w] || p[i] + DP[i-1][w- w[i]]

we use i in Iwe don’t use i in I

DP[0…n][0…W]

Let’s take a break

Longest Increasing Subsequence
Problem : Given array A find the length of the Longest Increasing Subsequence (LIS)

The longest possible subsequence in which
the elements of the subsequence are sorted

in increasing order.

LIS
A subsequence is a sequence generated

from the original array by deleting 0 or more
elements without changing the relative order

of the remaining elements.

Subsequence

A [1, 3, 5, 7]

Is it a subsequence ?

[1, 5, 7]

[3, 7] []

[1, 7, 5]

[1, 5, 7]

[3, 7]

[1, 7, 5]

[]

Longest Increasing Subsequence
Problem : Given array A find the length of the Longest Increasing Subsequence (LIS)

Examples :

[10, 9, 2, 5, 3, 7, 101, 18]

[3, 2, 1]

Input : Output : LIS:

4 [2, 3, 7, 18]

The longest possible subsequence in which
the elements of the subsequence are sorted

in increasing order.

LIS
A subsequence is a sequence generated

from the original array by deleting 0 or more
elements without changing the relative order

of the remaining elements.

Subsequence

1 [3] , [2] or [1]

Longest Increasing Subsequence

Definition of the DP table :

Computation of an entry :

Initialization :

Recursion :

Extracting the solution :

DP[i][l] = “smallest ending of an increasing subsequence of length l in A[0…i]“

Idea : We need to mark the smallest ending !

The solution is found by backtracking

for l > 1

DP[i][l] =

DP[0][l] = ∞ DP[0][1] = A[0]

DP[0…n-1][1…n]

∞ if no such incresing subsequence exists

A[i] if DP[i-1][l-1] < A[i] and A[i] < DP[i-1][l]

DP[i-1][l] else

A[i] improves the current smallest
ending of length i by being smaller

A[i] fits the element coming before
by being bigger than it (it should be

increasing)

DP
Exam Question

DP
How to learn

• Theory, written tasks :

• Exam questions T3 !!

• Exercise sheets

• geeksforgeeks

• Coding :

• CodeEx exercises , my videos

• Old Exam exercises

• Leetcode https://leetcode.com/studyplan/dynamic-programming/

Always a combination of the
ideas dicussed in lecture !

Table ? 🙅

https://leetcode.com/studyplan/dynamic-programming/

DP
Exam Tipps

• Get a hint from the running time
• Doesn’t always work!

• Have an order for yourself

• The definition of an entry should be very clear to you, at all times !

• Initialization : What should the entry be in base cases (ex : A = [])

• Recursion : How can you use the previous entries to get the current entry

• This is the only question that you’re answering !!

Always a combination of the
ideas dicussed in lecture !

Done with DP !

DP Mini Exam (lol)

Next Week

Questions

Nil Ozer

Feedbacks , Recommendations

