

A&D Overview

Outline

- Quick recap
- Quiz
- Exercise Sheet 1 Bonus Feedback
- Asymptotic Notation Kahoot
- Loop Counting
- Exercise Sheet 2 non Bonus
- Mini-exam discussion
- Code Expert Introduction

Quick Recap Mini cheat-sheet

Sums

Factorial

$$
\tfrac{n}{2} \tfrac{n}{2} \leq n! \leq n^n
$$

$$
\sum_{i=1}^{n} i^{k} \leq n^{k+1} \qquad \qquad \sum_{i=1}^{n} i^{k} = \Theta(n^{\mathsf{L}+1})
$$
\n
$$
\sum_{i=1}^{n} i^{k} \geq \frac{1}{2^{k+1}} \cdot n^{k+1} \qquad \qquad i = 0
$$

$\lim_{n \to \infty}$: 1 < log(log(n)) < log(n) < \sqrt{n} < n \leq n log(n) < n \sqrt{n} < n² < 2ⁿ < n | < n¹ N^x < X^0 (x being fixed)

Quick Recap **Definitions**

Definition 1 (*O*-Notation). For $f: N \to \mathbb{R}^+$,

 $O(f) \coloneqq \{g: N \to \mathbb{R}^+ \mid \exists C > 0 \, \forall n \in N \, g(n) \leq C \cdot f(n)\}.$

Definition 1 (Ω -Notation). For $f: N \to \mathbb{R}^+$,

 $\Omega(f) \coloneqq \{g: N \to \mathbb{R}^+ \mid f \leq O(g)\}.$

We write $g \geq \Omega(f)$ instead of $g \in \Omega(f)$.

Definition 2 (Θ -Notation). For $f: N \to \mathbb{R}^+$,

 $\Theta(f) := \{ g : N \to \mathbb{R}^+ \mid g \le O(f) \text{ and } f \le O(g) \}.$

We write $g = \Theta(f)$ instead of $g \in \Theta(f)$.

In other words, for two functions $f, g: N \to \mathbb{R}^+$ we have

$$
g \ge \Omega(f) \Leftrightarrow f \le O(g)
$$

and

$$
g = \Theta(f) \Leftrightarrow g \le O(f) \text{ and } f \le O(g).
$$

Theorem 1 (Theorem 1.1 from the script). Let N be an infinite subset of N and $f : N \to \mathbb{R}^+$ and $g: N \to \mathbb{R}^+$.

• If
$$
\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0
$$
, then $f \le O(g)$, but $f \ne \Theta(g)$.

• If
$$
\lim_{n \to \infty} \frac{f(n)}{g(n)} = C \in \mathbb{R}^+
$$
, then $f = \Theta(g)$.

• If
$$
\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty
$$
, then $f \ge \Omega(g)$, but $f \ne \Theta(g)$.

select one or more vs. select one

Log notation clarified

- From now on we use :
	- \cdot log for log₂(x)
	- \cdot In for log $_{\rm e}$ (x)

• Will be in the notation sheet

Exercise Sheet 1 Bonus Feedback

- Watch out for the base case $(n>=0 \rightarrow n=0)$
- Try to have all of the intermediate steps

- Don't rush to the solution, until you've gained the intuition by solving the task slowly!
- Log notation !

 $log(m^3) = log$

120rl with * log computat

Keep up the good work !!

$$
m \cdot m \cdot m
$$

m \cdot log $m \cdot log^{3}(m)$

$$
\tan \frac{\log(m^3)}{\log(m)^3} = \frac{3\log m}{\log(m)^3} = \frac{3}{\log(m)^2}
$$

Asymptotic Notation Kahoot

Loop Counting Task Description

a) Counting iterations: For the following code snippets, derive an asymptotic bound for the number of times f is called. Simplify the expression as much as possible and state it in Θ notation as concisely as possible.

i) Snippet 1:

ii) Snippet 2:

Your solution consist of :

- 1. Exact number of times f is called
- 2. Maximal simplification of the expression in θ-notation

Loop Counting Learn with an example!

Counting function calls in loops (1 point). **Exercise 3.3**

For each of the following code snippets, compute the number of calls to f as a function of $n \in \mathbb{N}$. Provide both the exact number of calls and a maximally simplified asymptotic bound in Θ notation.

Loop Counting Theorem

The following theorem is very useful for running-time analysis of divide-and-**Master theorem.** conquer algorithms.

Theorem 1 (master theorem). Let a, $C > 0$ and $b \ge 0$ be constants and $T : \mathbb{N} \to \mathbb{R}^+$ a function such *that for all even* $n \in \mathbb{N}$, $T(n) \leq aT(n/2) + Cn^b$. (1)

Then for all $n = 2^k$, $k \in \mathbb{N}$,

• If
$$
b > log_2 a
$$
, $T(n) \leq O(n^b)$.

- If $b = \log_2 a$, $T(n) \leq O(n^{\log_2 a} \cdot \log n)^{1}$
- If $b < \log_2 a$, $T(n) \leq O(n^{\log_2 a})$.

may replace O with Θ in the conclusion.

This generalizes some results that you have already seen in this course. For example, the (worst-case) running time of Karatsuba's algorithm satisfies $T(n) \leq 3T(n/2) + 100n$, so we have $a = 3$ and $b = 1 < \log_2 3$, hence $T(n) \leq O(n^{\log_2 3})$. Another example is binary search: its running time satisfies $T(n) \leq T(n/2) + 100$, so $a = 1$ and $b = 0 = \log_2 1$, hence $T(n) \leq O(\log n)$.

Either won't be used, or will be written in the task description

If the function T is increasing, then the condition $n = 2^k$ can be dropped. If (1) holds with "=", then we

Let's take a break

Loop Counting Exam question FS23

Theory Task T2.

In this part, you should justify your answers briefly.

 $\left| \begin{array}{c} 4 \ P \end{array} \right|$ a) *Counting iterations:* For the following code snippets, derive an asymptotic bound for the number of times f is called. Simplify the expression as much as possible and state it in Θ notation as concisely as possible.

i) Snippet 1:

ii) Snippet 2:

Algorithm 2 for $i = 1, \ldots, n$ do $k \leftarrow 1$ while $k \leq i^2$ do
 $f()$
 $k \leftarrow 2k$ $f()$

 $/15P$

Loop Counting Exam Tipps

- T2 task
- 2 snippets
	- First one easier second one harder
- If it's needed, the master theorem will be there

- Show your work !
- Solve it, whenever it appears !

• It's relatively easy once you've practiced it !

Exercise Sheet 2 (Non Bonus)

Gruppen

Abgegeben

Mini Exam Discussion

Induction + Asymptotic Notation

Code Expert Introduction

Questions **Feedbacks, Recommendations**

