

A&D Overview

Shortest Paths - all to all

• DP Recap

Exam preparation session organization

one-to-all

LA BES usage 4 Dijkstra + Bellman-Ford (> negative - closed w. detection

> Shortest Paths all-to-all A one-to-all usage 4 Floyd - Warshall 4 Johnson 4 # walks using AG

Lo overview

Recap Shortest Paths (one - to - all)

G (directed/undirected)

unweighted , all edges with the same positive weight

weighted , nonnegative edge weights c(e) ≥ 0

weighted, positive and (possibly) negative edge weights $c(e) \in \mathbb{R}$

G has no cycles

Algorithm	Runtime
BFS usage	O (V + E)
Dijsktra	O ((V + E) * log n)
Belmann-Ford	O (V * E)
topological sorting + DP	O (V + E)

Shortest Paths All-to-all

G (directed/undirected)

unweighted , all edges with the same positive weight

weighted , nonnegative edge weights c(e) ≥ 0

weighted, positive and (possibly) negative edge weights $c(e) \in \mathbb{R}$

weighted, positive and (possibly) negative edge weights $c(e) \in \mathbb{R}$, no negative cycles

Algorithm	Runtime	
n x BFS	O (V * (V + E))	
n x Dijsktra	O (V * (V + E) * log(V)) O(V * E + V ² log(V))	with Fibonaco
n x Belmann-Ford	O (V * V * E)	
Floyd - Warshall	O(V ³)	
Johnson	O (V * (V + E) * log n) O(V * E + V ² log(V))	with Fibonaco

cci-Heap

cci-Heap

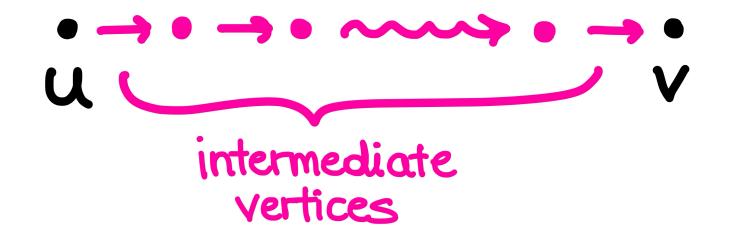
- Idea : Two things can happen about a vertex i, considering a walk from vertex u to v i does not get used in walk u-v

 - i gets used in walk u-v

Definition of the DP table :

 $DP[i][u][v] = "The length of the shortest u-v walk that only uses the intermediate vertices from {1...i}"$

intermediate vertices :



FLOYD-WARSHALL(G = (V, E), c)

$$1 \quad DP[0][u][v] \leftarrow \begin{cases} 0 & \text{falls } u = c \\ c(u, v) & \text{falls } (u, v) \\ \infty & \text{sonst} \end{cases}$$

2 for $i \leftarrow 1, \ldots, n$ do for $u \leftarrow 1, \ldots, n$ do 3 for $v \leftarrow 1, \ldots, n$ do 4 56 return DP

DP[i][u][v] = "The length of the shortest u-v walk that only uses the intermediate vertices from {1...i}"

v ist, no need to walk, we're already there

 $E \in E$ ist, just walk that edge, you don't use any intermediate vertices

you can't reach v without using intermediate vertices

$DP[i][u][v] \leftarrow \min(DP[i-1][u][v], DP[i-1][u][i] + DP[i-1][i][v])$

don't use vertex i

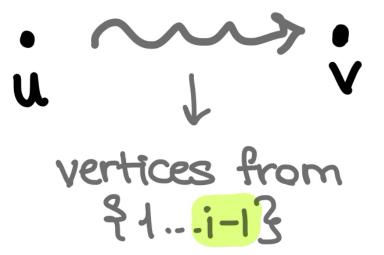
use vertex i

FLOYD-WARSHALL(G = (V, E), c)

 $1 \quad DP[0][u][v] \leftarrow \begin{cases} 0 & \text{falls } u = v \text{ ist,} \\ c(u,v) & \text{falls } (u,v) \in E \text{ ist,} \\ \infty & \text{sonst} \end{cases} \text{ no need to walk, we're already there}$ $just walk that edge, you don't use any intermediate vertices}$ $you \operatorname{can't reach v without using intermediate vertices}$ 2 for $i \leftarrow 1, \ldots, n$ do for $u \leftarrow 1, \ldots, n$ do 3 for $v \leftarrow 1, \ldots, n$ do 4 $\mathbf{5}$ 6 return DP don't use vertex

DP [i-1][u][v]

shortest walk from u to v using {1...i-1}



DP[i][u][v] =The length of the shortest u-v walk that only uses the intermediate vertices from {1...i}'

$DP[i][u][v] \leftarrow \min(DP[i-1][u][v], DP[i-1][u][i] + DP[i-1][i][v])$

no need to walk, we're already there

use vertex

DP[i-1][u][i] + DP[i-1][i][v]

shortest walk from u to i using {1...i-1} + shortest walk from i to v using {1...i-1}

Vertices from ו<u>ו-ו</u>צ

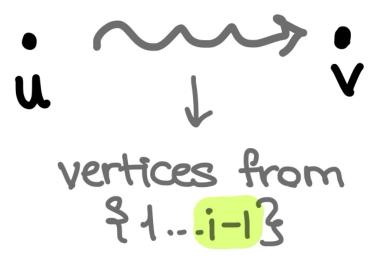
vertices from 81...<mark>i-1</mark>3

FLOYD-WARSHALL(G = (V, E), c)

$$1 \quad DP[0][u][v] \leftarrow \begin{cases} 0 & \text{falls } u = v \text{ ist,} & \text{no need to walk, we're already there} \\ c(u, v) & \text{falls } (u, v) \in E \text{ ist,} & \text{just walk that edge, you don't use any intermediate vertices} \\ c(u, v) & \text{falls } (u, v) \in E \text{ ist,} & \text{just walk that edge, you don't use any intermediate vertices} \\ c(u, v) & \text{falls } (u, v) \in E \text{ ist,} & \text{just walk that edge, you don't use any intermediate vertices} \\ c(u, v) & \text{falls } (u, v) \in E \text{ ist,} & \text{just walk that edge, you don't use any intermediate vertices} \\ c(u, v) & \text{falls } (u, v) \in E \text{ ist,} & \text{just walk that edge, you don't use any intermediate vertices} \\ c(u, v) & \text{falls } (u, v) \in E \text{ ist,} & \text{just walk that edge, you don't use any intermediate vertices} \\ c(u, v) & \text{falls } (u, v) \in E \text{ ist,} & \text{just walk that edge, you don't use any intermediate vertices} \\ c(u, v) & \text{falls } (u, v) \in E \text{ ist,} & \text{just walk that edge, you don't use any intermediate vertices} \\ c(u, v) & \text{falls } (u, v) \in E \text{ ist,} & \text{just walk that edge, you don't use any intermediate vertices} \\ c(u, v) & \text{falls } (u, v) \in E \text{ ist,} & \text{just walk that edge, you don't use any intermediate vertices} \\ c(u, v) & \text{falls } (u, v) \in E \text{ ist,} & \text{just walk that edge, you don't use any intermediate vertices} \\ c(u, v) & \text{falls } (u, v) \in E \text{ ist,} & \text{just walk that edge, you don't use any intermediate vertices} \\ c(u, v) & \text{falls } (u, v) \in E \text{ ist,} & \text{just walk that edge, you don't use any intermediate vertices} \\ c(u, v) & \text{falls } (u, v) \in E \text{ ist,} & \text{just walk that edge, you don't use any intermediate vertices} \\ c(u, v) & \text{falls } (u, v) \in E \text{ ist,} & \text{just walk that edge, you don't use any intermediate vertices} \\ c(u, v) & \text{falls } (u, v) \in E \text{ ist,} & \text{just walk that edge, you don't use any intermediate vertices} \\ c(u, v) & \text{falls } (u, v) \in E \text{ ist,} & \text{just walk that edge, you don't use any intermediate vertices} \\ c(u, v) & \text{falls } (u, v) \in E \text{ ist,} & \text{just walk that edge, you don't use any intermediate vertices} \\ c(u, v)$$

DP [i-1][u][v]

shortest walk from u to v using {1...i-1}



DP[i][u][v] = 'The length of the shortest u-v walk that only uses the intermediate vertices from {1...i}"

ces

Runtime: O(n³)

Solution at: DP[n][][]

"using all vertices"

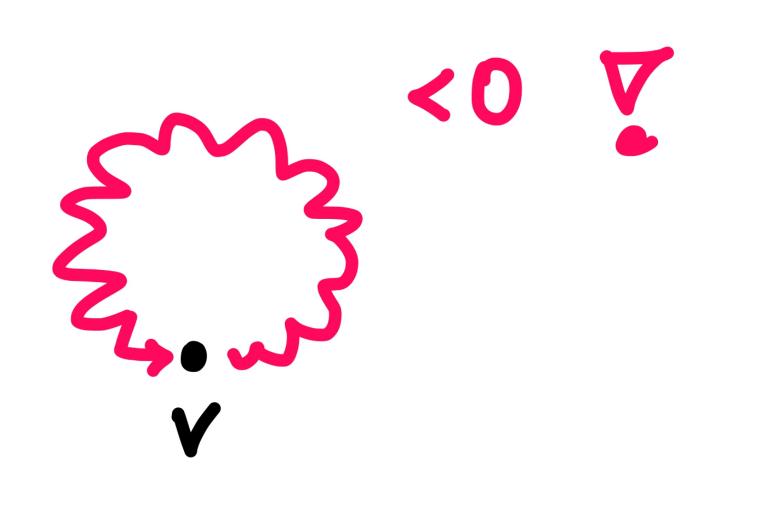
DP[i-1][u][i] + DP[i-1][i][v]

shortest walk from u to i using {1...i-1} + shortest walk from i to v using {1...i-1}

ו...<mark>ו-ו</mark>צ

81...<mark>i-1</mark>3

All-to-all Shortest Paths Floyd-Warshall, Negative Closed Walk Detection



$\exists a negative closed walk \iff \exists v with DP[n][v][v] < 0$

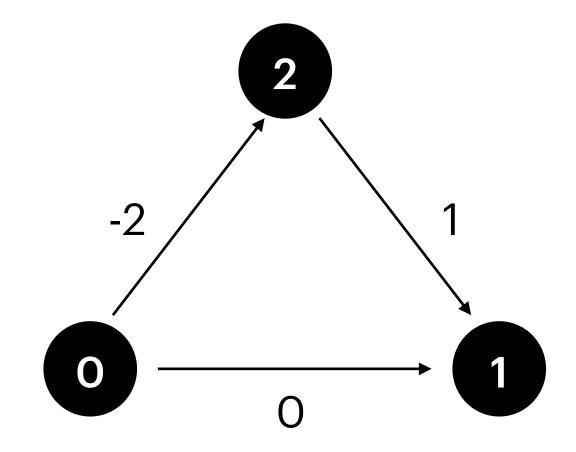
DP[n][v][v] : The shortest walk from v to v using {1...n}

All-to-all Shortest Paths Johnson

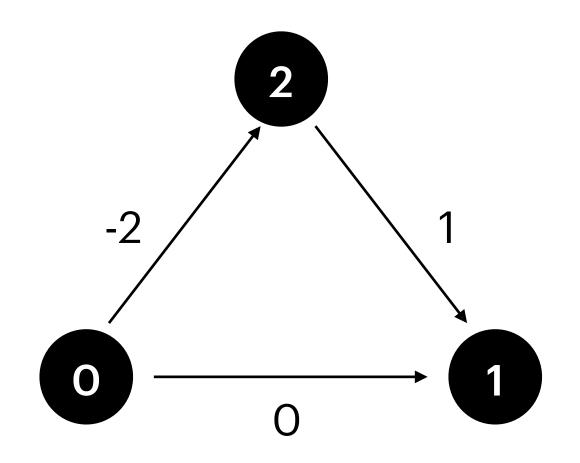
- $\frac{1}{2}$ Idea : Make all edge weights ≥ 0
 - n x Dijkstra

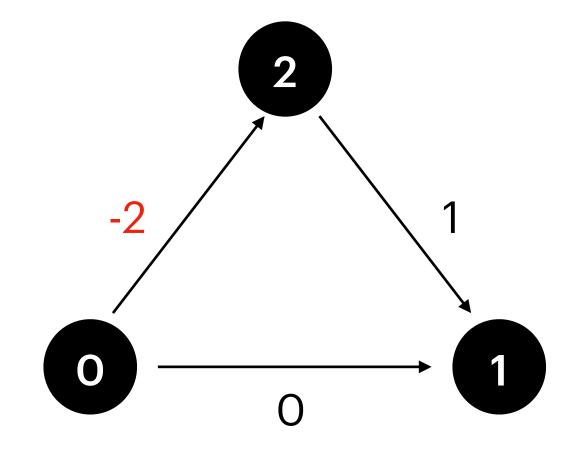
Problem is the negative edges ! (we can't use dijkstra)

- **DOES NOT WORK WITH NEGATIVE CYCLES!**
- We know Dijkstra, how can we make all edge weights ≥ 0 ?

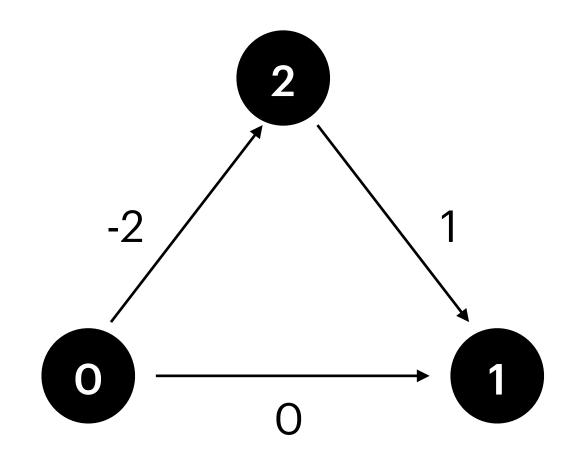


c(0,2) = -2 c(2,1) = 1 c(0,1) = 0

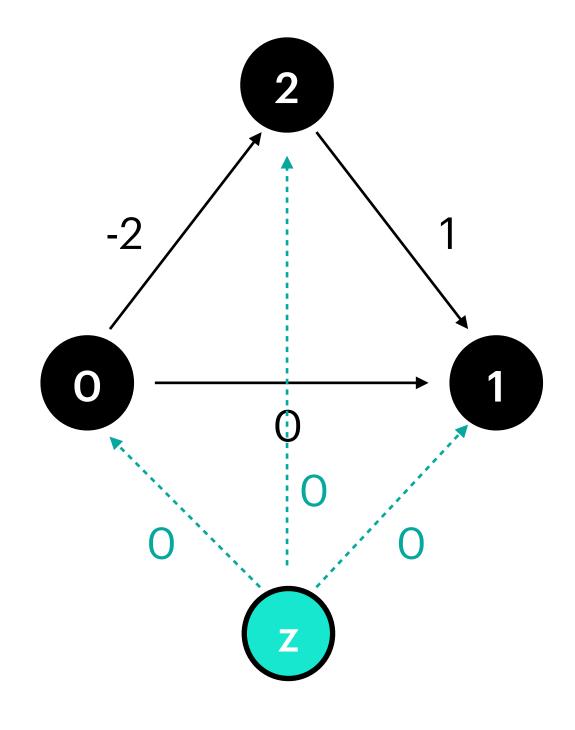




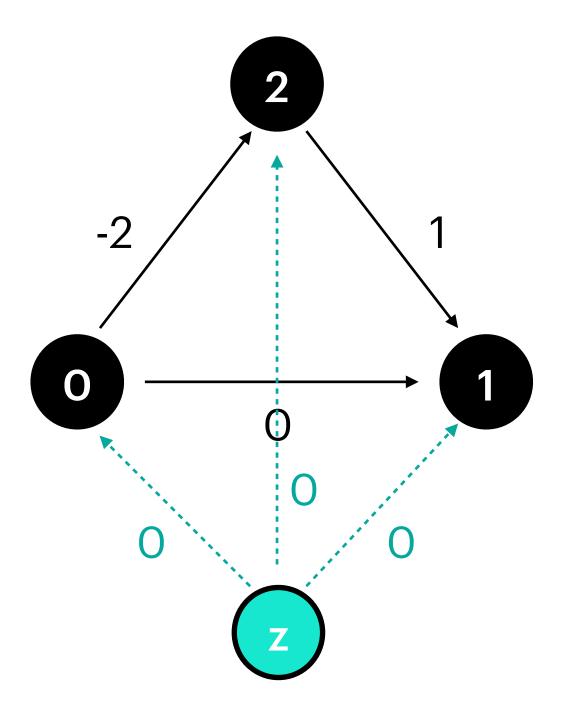
 Add a new vertex z, and connect it to every vertex in the original G with and edge with cost 0



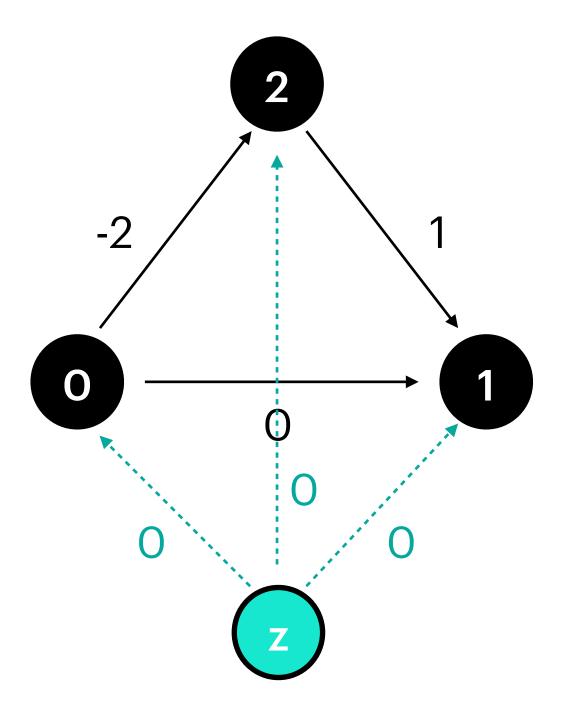
 Add a new vertex z, and connect it to every vertex in the original G with and edge with cost 0



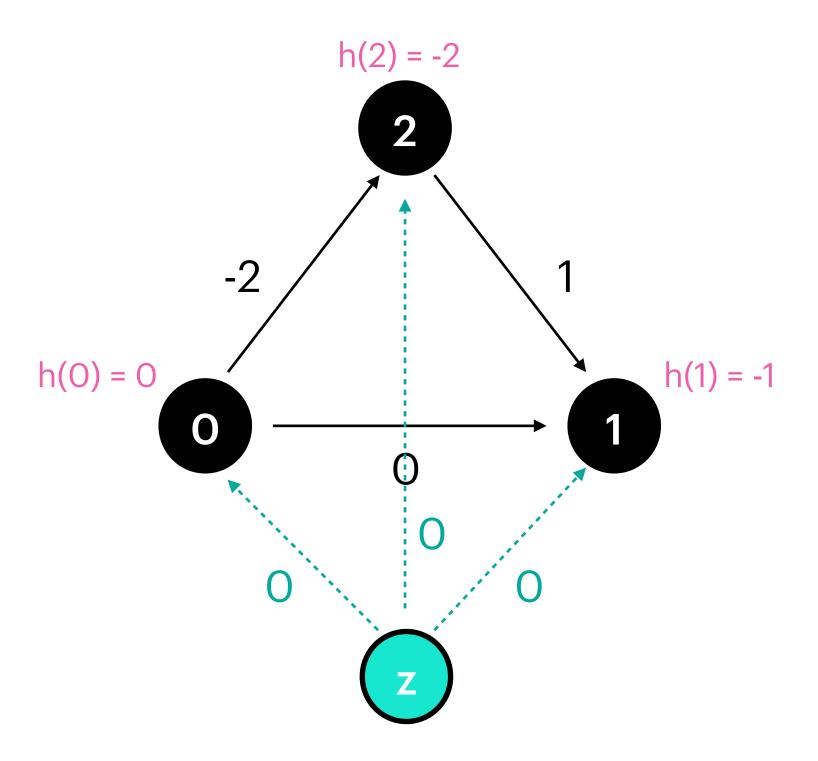
- Add a new vertex z, and connect it to every vertex in the original G with and edge with cost 0
- with Bellman-Ford x1 from z • Find h(u) for every u h(u) := length of the shortest path from z to u



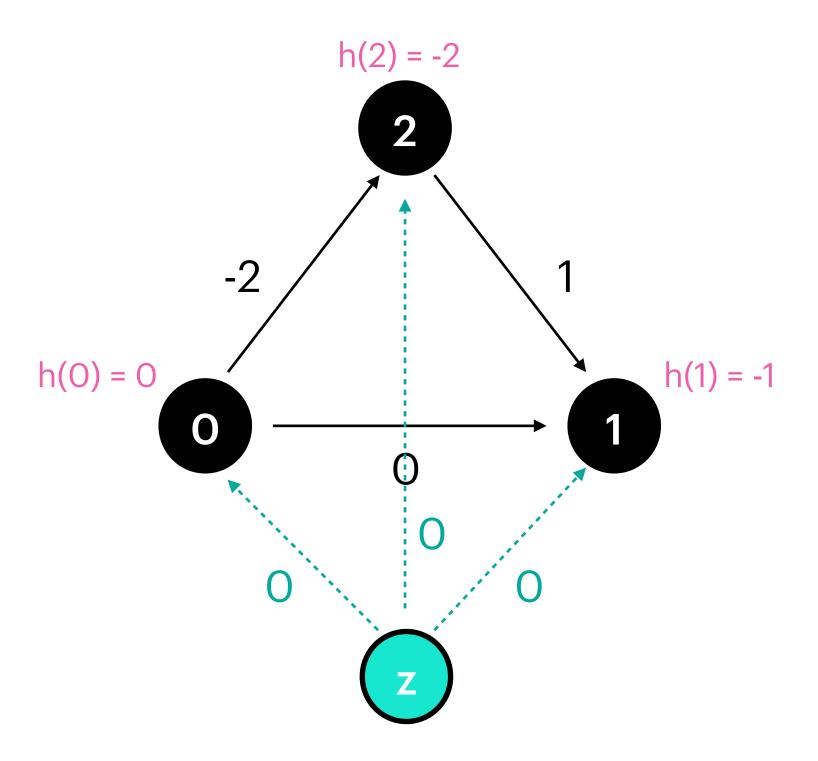
- Add a new vertex z, and connect it to every vertex in the original G with and edge with cost 0
- with Bellman-Ford x1 from z • Find h(u) for every u h(u) := length of the shortest path from z to u



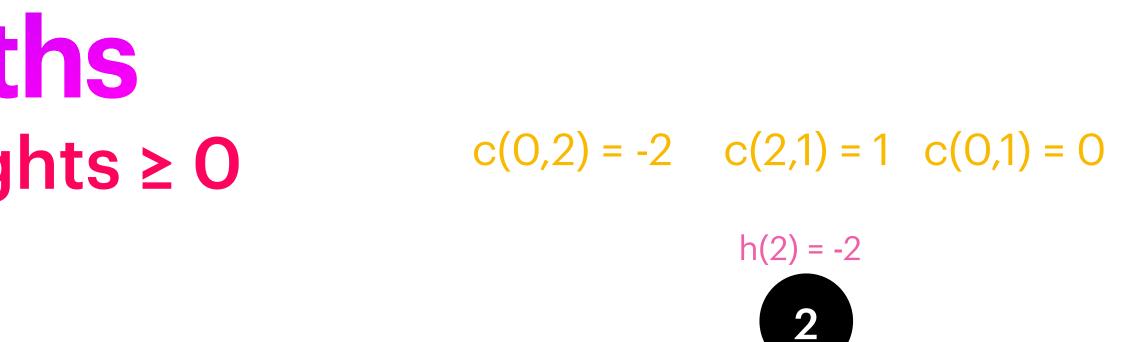
- Add a new vertex z, and connect it to every vertex in the original G with and edge with cost 0
- with Bellman-Ford x1 from z • Find h(u) for every u h(u) := length of the shortest path from z to u

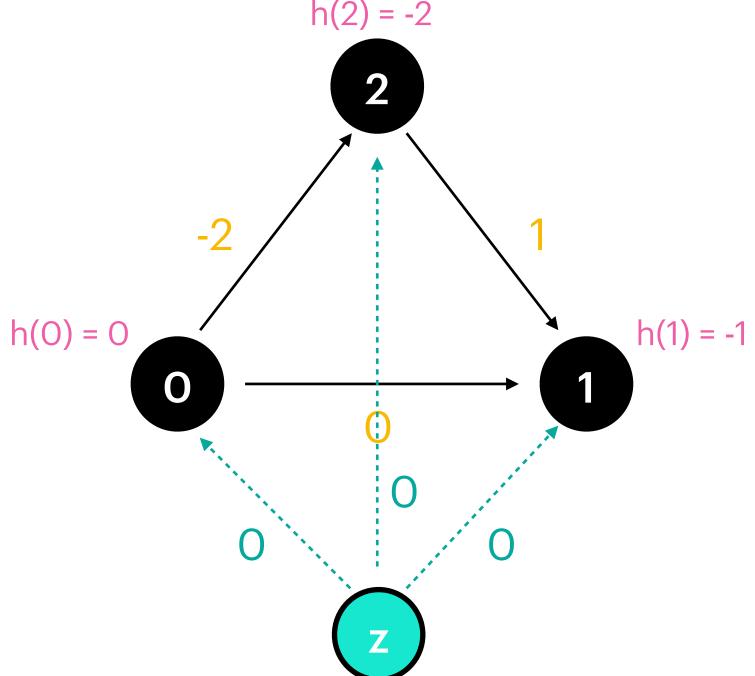


- Add a new vertex z, and connect it to every vertex in the original G with and edge with cost O
- with Bellman-Ford x1 from z • Find h(u) for every u h(u) := length of the shortest path from z to u
- Calculate c'(u,v) for every edge c'(u,v) := c(u,v) + h(u) - h(v)



- Add a new vertex z, and connect it to every vertex in the original G with and edge with cost O
- with Bellman-Ford x1 from z • Find h(u) for every u h(u) := length of the shortest path from z to u
- Calculate c'(u,v) for every edge c'(u,v) := c(u,v) + h(u) - h(v)



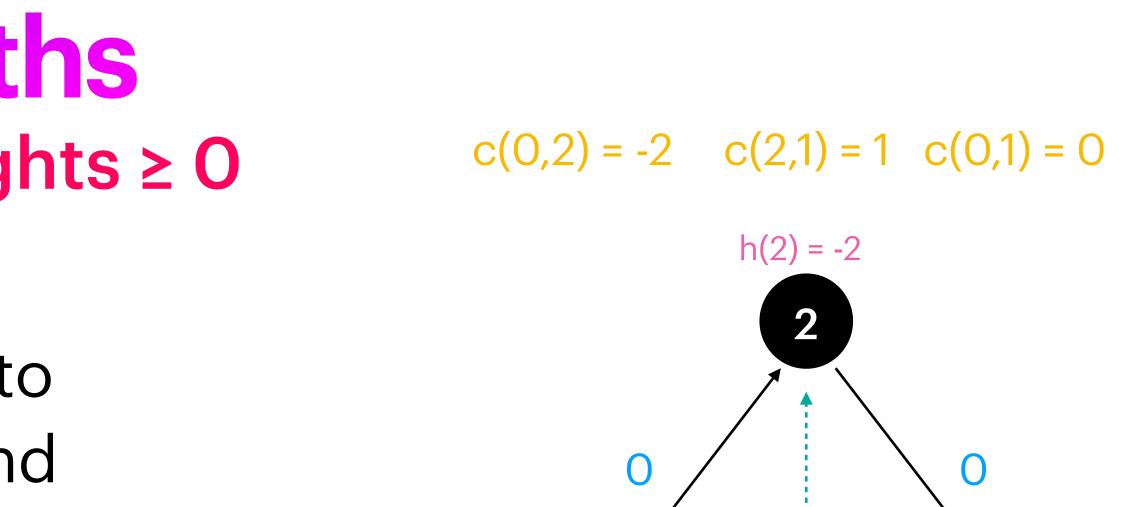


c'(0,2) = c(0,2) + h(0) - h(2) = -2 + 0 - (-2) = 0

c'(0,1) = c(0,1) + h(0) - h(1) = 0 + 0 - (-1) = 1

c'(2,1) = c(2,1) + h(2) - h(1) = 1 + (-2) - (-1) = 0

- Add a new vertex z, and connect it to every vertex in the original G with and edge with cost O
- with Bellman-Ford x1 from z • Find h(u) for every u h(u) := length of the shortest path from z to u
- Calculate c'(u,v) for every edge c'(u,v) := c(u,v) + h(u) - h(v)



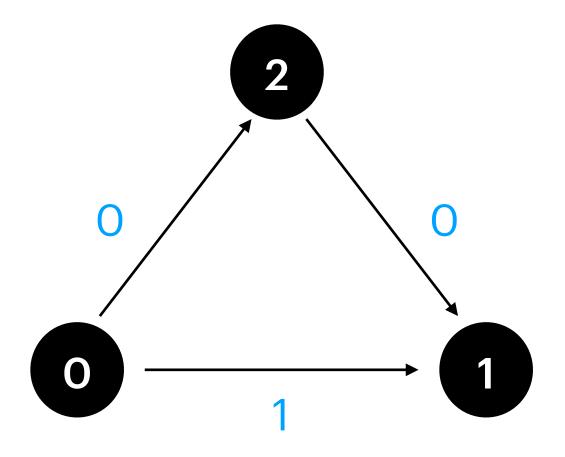
h(0) = 0

c'(0,2) = c(0,2) + h(0) - h(2) = -2 + 0 - (-2) = 0c'(0,1) = c(0,1) + h(0) - h(1) = 0 + 0 - (-1) = 1c'(2,1) = c(2,1) + h(2) - h(1) = 1 + (-2) - (-1) = 0

C

h(1) = -1

- Add a new vertex z, and connect it to every vertex in the original G with and edge with cost O
- with Bellman-Ford x1 from z • Find h(u) for every u h(u) := length of the shortest path from z to u
- Calculate c'(u,v) for every edge c'(u,v) := c(u,v) + h(u) - h(v)



All-to-all Shortest Paths Johnson

- $\frac{1}{2}$ Idea : Make all edge weights ≥ 0
 - n x Dijkstra

Problem is the negative edges ! (we can't use dijkstra)

DOES NOT WORK WITH NEGATIVE CYCLES!

Shortest Paths Overview

one-to-all

G (directed/undirected)	Algorithm	Runtime
unweighted , all edges with the same positive weight	BFS usage	O (V + E)
weighted , nonnegative edge weights c(e) ≥ 0	Dijsktra	O ((V + E) * log n)
weighted, positive and (possibly) negative edge weights $c(e) \in \mathbb{R}$	Belmann-Ford*	O (V * E)
G has no cycles	topological sorting + DP	O (V + E)

all-to-all

G (directed/undirected)	Algorithm	Runtime
unweighted , all edges with the same positive weight	n x BFS	O (V * (V + E))
weighted , nonnegative edge weights c(e) ≥ 0	n x Dijsktra	O (V * (V + E) * log(V))
weighted, positive and (possibly)	n x Belmann-Ford	O (V * V * E)
negative edge weights c(e) ∈ ℝ	Floyd - Warshall*	O(V ³)
weighted, positive and (possibly) negative edge weights $c(e) \in \mathbb{R}$, no negative cycles	Johnson	O (V * (V + E) * log n)

*negative closed walk detection

Shortest Paths Exam Tipps

- Know every detail of the "overview"
- Graph Modelling
 - Model the problem correctly, define G,V,E,w
 - - BFS, DFS
 - Shortest Paths
 - MST

Practice, practice, practice !!!

Know which algorithm to apply for that particular graph problem

Recap

Theory Task T3.

Let $A = [a_1, a_2, \ldots, a_n]$ be an array of non-negative integers. Given A and a non-negative integers S > 0, we want to determine whether S can be written as a (non-repeating) sum of elements of A, where we are allowed to take the square of elements. Formally, we want to determine if there exist $I, J \subseteq \{1, 2, \dots, n\}$ with $I \cap J = \emptyset, I \cup J = \{1, 2, \dots, n\}$ such that:

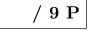
$$S = \sum_{i \in I} a_i + \sum_{j \in J} a_j^2.$$

Provide a *dynamic programming* algorithm that outputs **True** if this is possible, and **False** otherwise. For example,

- The inputs A = [2, 4, 4], S = 34 should result in **True**, since $34 = 2 + 4^2 + 4^2$.
- The inputs A = [2, 4, 4], S = 35 should result in False.
- The inputs A = [2, 4, 3, 22], S = 21 should result in False

In order to obtain full points, your algorithm should run in time $O(n^2 \cdot S)$. Address the following aspects of your solution:

- 1) Definition of the DP table: What are the dimensions of each entry?
- 2) Computation of an entry: How can an entry be con Specify the base cases, i.e., the entries that do not c
- 3) Calculation order: In which order can entries be c entry have been determined in previous steps?
- 4) *Extracting the solution*: How can the final solution b
- 5) *Running time*: What is the running time of your algo of n and S, and justify your answer.



Theory Task T3.

You are given an array of n natural numbers $a_1, \ldots, a_n \in \mathbb{N}$, and two natural numbers $A, B \in \mathbb{N}$. You want to determine whether there is a subset $I \subseteq \{1, \ldots, n\}$ satisfying

$$\sum_{i \in I} a_i =$$

For example,

- and the sum-of-squares $2^2 + 1^2 + 5^2 = 30$.
- The answer for the input $(a_i)_{i \le n} = [2, 4, 8, 1]$, A = 6 and B = 15 is no.

in your solution:

meaning of each entry?

/ 8 P

Theory Task T3.

An array of non-negative integers $A = [a_1, \ldots, a_n]$ is called summy if and only if, for all $i \in$ $\{2,\ldots,n\}$, there exists a (possibly empty) set $I \subseteq \{1,\ldots,i-1\}$ such that $a_i = \sum_{i \in I} a_i$. In other terms, every integer in the array except the first one must be the sum of (distinct) integers that precede it in the array.

For example,

- The array [2, 2, 4, 6, 0, 12] is summy, because 2 = 2, 4 = 2 + 2, 6 = 2 + 4, 12 = 2 + 4 + 6.
- The array [2, 2, 4, 6, 0, 13] is not summy, since 13 can not be written as a sum of integers from $\{2, 2, 4, 6, 0\}.$

Provide a *dynamic programming* algorithm that, given an array A of length n, returns **True** if the array is summy, and False otherwise. In order to obtain full points, your algorithm should have an $O(n \cdot \max A)$ runtime (where max A means the maximum value of entries in A). Address the following aspects in your solution:

- 1) Definition of the DP table: What are the dimensions of the table $DP[\ldots]$? What is the meaning of each entry
- 2) Computation of an entry: How can an entry be computed from the values of other entries ? Specify the base cases, i.e., the entries that do not depend on others.
- 3) Calculation order: In which order can entries be computed so that values needed for each entry have been determined in previous steps?
- 4) Extracting the solution: How can the final solution be extracted once the table has been filled
- 5) Running time: What is the running time of your algorithm ? Provide it in Θ -notation in terms of n and max A, and justify your answer.

$$A \quad \text{and} \quad \sum_{i \in I} a_i^2 = B.$$

our algoi

• The answer for the input $(a_i)_{i \le n} = [2, 4, 8, 1, 4, 5, 3]$, A = 8 and B = 30 is yes because the set of indices $I = \{1, 4, 6\}$, which corresponds to $(a_i)_{i < I} = [2, 1, 5]$, yields the sum 2 + 1 + 5 = 8

Provide a dynamic programming algorithm that determines whether such a subset I exists. In order to get full points, your algorithm should have an $O(n \cdot A \cdot B)$ runtime. Address the following aspects

1) Definition of the DP table: What are the dimensions of the table $DP[\ldots]$? What is the

	meaning in each entry
be com lo not de	Theory Task T3.
es be co	Let m, r be two integers satisfying $m \ge 2$ and $0 \le r < m$. We say that a finite set $A \subset \mathbb{N}$ of natura numbers is (m, r) -aligned if
s ?	$\left(\sum_{x\in A} x\right) \mod m = r$.
lution be	$\left(\begin{array}{c} \sum_{x \in A} \end{array} \right)$

Note that for $A = \emptyset$, we adopt the convention that $\sum x = 0$. Hence, the empty set is (m, 0)-aligned for every m > 0.

Given three integers m, r, n such that $0 \le r \le m \le n$ and $m \ge 2$, we would like to determine the number of subsets of $\{1, 2, ..., n\}$ which are (m, r)-aligned.

For example.

• If r = 1, m = 2 and n = 3, the subsets of $\{1, 2, 3\}$ that are $\{3, 1\}$ -aligned are $\{1\}, \{3\}, \{1, 2\}$ and $\{2, 3\}$. Hence, the answer is 4.

Provide a dynamic programming algorithm that solves the problem. In order to get full points, your algorithm should have an $O(n \cdot m)$ runtime. Address the following aspects in your solution:

- 1) Definition of the DP table: What are the dimensions of the table $DP[\ldots]$? What is the meaning of each entry?
- 2) Computation of an entry: How can an entry be computed from the values of other entries? Specify the base cases, i.e., the entries that do not depend on others.
- 3) Calculation order: In which order can entries be computed so that values needed for each entry have been determined in previous steps?
- 4) Extracting the solution: How can the final solution be extracted once the table has been filled
- 5) Running time: What is the running time of your algorithm ? Provide it in Θ -notation in terms of n, m and r, and justify your answer.

heory Task T3.

ou are given an array of n natural numbers $a_1, \ldots, a_n \in \mathbb{N}$ summing to $A := \sum_{i=1}^n a_i$, which is a ultiple of 3. You want to determine whether it is possible to partition $\{1, \ldots, n\}$ into three disjoint

$$\sum_{i \in I} a_i = \sum_{j \in J} a_j = \sum_{k \in K} a_k = \frac{A}{3}.$$

ote that I, J, K form a partition of $\{1, \ldots, n\}$ if and only if $I \cap J = I \cap K = J \cap K = \emptyset$ and $\cup J \cup K = \{1, \dots, n\}.$

I ubsets I, J, K such that the corresponding elements of the array yield the same sum, i.e.

or example, the answer for the input [2, 4, 8, 1, 4, 5, 3] is yes, because there is the partition $\{3, 4\}$. 2, 6, $\{1, 5, 7\}$ (corresponding to the subarrays [8, 1], [4, 5], [2, 4, 3], which are all summing to 9). In the other hand, the answer for the input [3, 2, 5, 2] is no.

rovide a *dynamic programming* algorithm that determines whether such a partition exists. Your lgorithm should have an $\mathcal{O}(nA^2)$ runtime to get full points. Address the following aspects in your olution:

1) Definition of the DP table: What are the dimensions of the table $DP[\ldots]$? What is the meaning of each entry?

> n an entry be computed from the values of other entries? ries that do not depend on others.

> can entries be computed so that values needed for each vious steps?

> ne final solution be extracted once the table has been filled?

g time of your algorithm? Provide it in Θ -notation in terms er.

Recap

Theory Task T3.

Let $A = [a_1, a_2, \ldots, a_n]$ be an array of non-negative integers. Given A and a non-negative integers S > 0, we want to determine whether S can be written as a (non-repeating) sum of elements of A, where we are allowed to take the square of elements. Formally, we want to determine if there exist $I, J \subseteq \{1, 2, \dots, n\}$ with $I \cap J = \emptyset, I \cup J = \{1, 2, \dots, n\}$ such that:

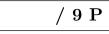
$$S = \sum_{i \in I} a_i + \sum_{j \in J} a_j^2.$$

Provide a *dynamic programming* algorithm that outputs **True** if this is possible, and **False** otherwise. For example,

- The inputs A = [2, 4, 4], S = 34 should result in **True**, since $34 = 2 + 4^2 + 4^2$.
- The inputs A = [2, 4, 4], S = 35 should result in False.
- The inputs A = [2, 4, 3, 22], S = 21 should result in False

In order to obtain full points, your algorithm should run in time $O(n^2 \cdot S)$. Address the following aspects of your solution:

- 1) Definition of the DP table: What are the dimensions of each entry?
- 2) Computation of an entry: How can an entry be con Specify the base cases, i.e., the entries that do not a
- 3) Calculation order: In which order can entries be c entry have been determined in previous steps?
- 4) Extracting the solution: How can the final solution b
- 5) *Running time*: What is the running time of your algo of n and S, and justify your answer.



Theory Task T3.

You want to determine whether there is a subset $I \subseteq \{1, \ldots, n\}$ satisfying

$$\sum_{i \in I} a_i = A \quad \text{and} \quad \sum_{i \in I} a_i^2 = B.$$

/ 8 P

For example,

- and the sum-of-squares $2^2 + 1^2 + 5^2 = 30$.
- The answer for the input $(a_i)_{i \le n} = [2, 4, 8, 1]$, A = 6 and B = 15 is no.

in your solution:

meaning of each entry?

Theory Task T3.

An array of non-negative integers $A = [a_1, \ldots, a_n]$ is called summy if and only if, for all $i \in$ $\{2,\ldots,n\}$, there exists a (possibly empty) set $I \subseteq \{1,\ldots,i-1\}$ such that $a_i \models \sum_{i \in I} a_i$. In other terms, every integer in the array except the first one must be the sum of (di tinct) integers that precede it in the array.

For example,

- The array [2, 2, 4, 6, 0, 12] is summy, because 2 = 2, 4 = 2 + 2, 6 = 2 + 4, 12 = 2 + 4 + 6.
- The array [2, 2, 4, 6, 0, 13] is not summy, since 13 can not be written as a sum of integers from $\{2, 2, 4, 6, 0\}.$

Provide a *dynamic programming* algorithm that, given an array A of length n, returns **True** if the array is summy, and False otherwise. In order to obtain full points, your algorithm should have an $O(n \cdot \max A)$ runtime (where max A means the maximum value of entries in A). Address the following aspects in your solution:

- 1) Definition of the DP table: What are the dimensions of the table $DP[\ldots]$? What is the meaning of each entry
- 2) Computation of an entry: How can an entry be computed from the values of other entries ? Specify the base cases, i.e., the entries that do not depend on others.
- 3) Calculation order: In which order can entries be computed so that values needed for each entry have been determined in previous steps?
- 4) Extracting the solution: How can the final solution be extracted once the table has been filled
- 5) Running time: What is the running time of your algorithm ? Provide it in Θ -notation in terms of n and max A, and justify your answer.

You are given an array of n natural numbers $a_1, \ldots, a_n \in \mathbb{N}$, and two natural numbers $A, B \in \mathbb{N}$.

• The answer for the input $(a_i)_{i \le n} = [2, 4, 8, 1, 4, 5, 3]$, A = 8 and B = 30 is yes because the set of indices $I = \{1, 4, 6\}$, which corresponds to $(a_i)_{i < I} = [2, 1, 5]$, yields the sum 2 + 1 + 5 = 8

Provide a dynamic programming algorithm that determines whether such a subset I exists. In order to get full points, your algorithm should have an $O(n \cdot A \cdot B)$ runtime. Address the following aspects

1) Definition of the DP table: What are the dimensions of the table $DP[\ldots]$? What is the

-		IIIPA	
be com do not de	Theory Task T3.		/ 9 P
es be co s ? lution b€	Let m, r be two integers satisfying r numbers is (m, r) -aligned if	$n \ge 2 \text{ and } 0 \le r \le m$. We say $\left(\sum_{x \in A} x\right) \mod m = r$.	v that a finite set $A \subset \mathbb{N}$ of natural
	Note that for $A = \emptyset$, we adopt the c	onvention that $\sum x = 0$. He	ence, the empty set is $(m, 0)$ -aligned

 $\sum_{x \in A}$ our algoi for every m > 0.

> Given three integers m, r, n such that $0 \le r \le m \le n$ and $m \ge 2$, we would like to determine the number of subsets of $\{1, 2, ..., n\}$ which are (m, r)-aligned.

For example.

• If r = 1, m = 2 and n = 3, the subsets of $\{1, 2, 3\}$ that are $\{3, 1\}$ -aligned are $\{1\}, \{3\}, \{1, 2\}$ and $\{2,3\}$. Hence, the answer is 4.

Provide a *dynamic programming* algorithm that solves the problem. In order to get full points, your algorithm should have an $O(n \cdot m)$ runtime. Address the following aspects in your solution:

- 1) Definition of the DP table: What are the dimensions of the table $DP[\ldots]$? What is the meaning of each entry?
- 2) Computation of an entry: How can an entry be computed from the values of other entries? Specify the base cases, i.e., the entries that do not depend on others.
- 3) Calculation order: In which order can entries be computed so that values needed for each entry have been determined in previous steps?
- 4) Extracting the solution: How can the final solution be extracted once the table has been filled
- 5) Running time: What is the running time of your algorithm ? Provide it in Θ -notation in terms of n, m and r, and justify your answer.

heory Task T3.

ou are given an array of n natural numbers $a_1, \ldots, a_n \in \mathbb{N}$ summing to $A := \sum_{i=1}^n a_i$, which is a ultiple of 3. You want to determine whether it is possible to partition $\{1, \ldots, n\}$ into three disjoint

$$\sum_{i \in I} a_i = \sum_{j \in J} a_j = \sum_{k \in K} a_k = \frac{A}{3}.$$

for that I, J, K form a partition of $\{1, \ldots, n\}$ if and only if $I \cap J = I \cap K = J \cap K = \emptyset$ and $\cup J \cup K = \{1, \dots, n\}.$

ibsets I, J, K such that the corresponding elements of the array yield the same sum, i.e.

or example, the answer for the input [2, 4, 8, 1, 4, 5, 3] is yes, because there is the partition $\{3, 4\}$, 2, 6, $\{1, 5, 7\}$ (corresponding to the subarrays [8, 1], [4, 5], [2, 4, 3], which are all summing to 9). In the other hand, the answer for the input [3, 2, 5, 2] is no.

rovide a *dynamic programming* algorithm that determines whether such a partition exists. Your lgorithm should have an $\mathcal{O}(nA^2)$ runtime to get full points. Address the following aspects in your olution:

1) Definition of the DP table: What are the dimensions of the table $DP[\ldots]$? What is the meaning of each entry?

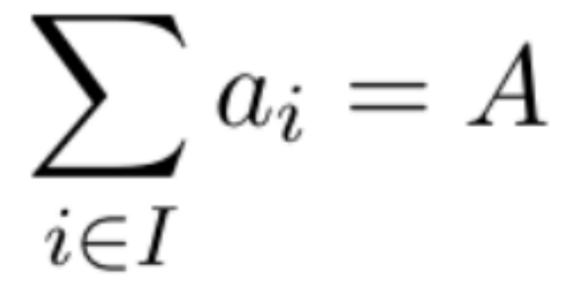
> n an entry be computed from the values of other entries? ries that do not depend on others.

> can entries be computed so that values needed for each vious steps?

> in the final solution be extracted once the table has been filled?

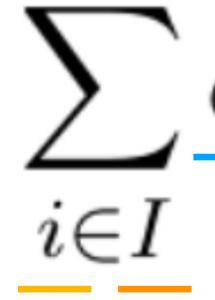
g time of your algorithm? Provide it in Θ -notation in terms er.

DP S



a 1	a ₂	a 3	a 4	a 5	a 6	a 7
1	2	0	1	0	0	0

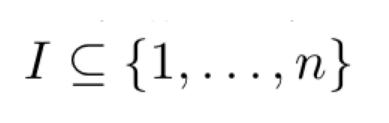
$I \subseteq \{1, \ldots, n\}$

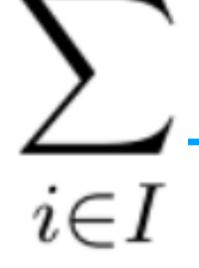


indexes i from Index-set I

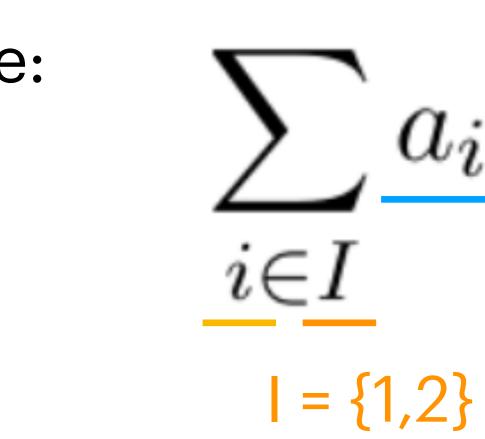
elements a_i according to indexes i

sum of the elements ai





sum of the elements ai indexes i from Index-set I



example:

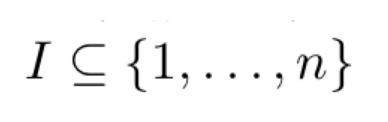
elements a_i according to indexes i

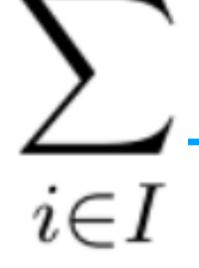
$$a_i = A$$

$$a_i = A$$

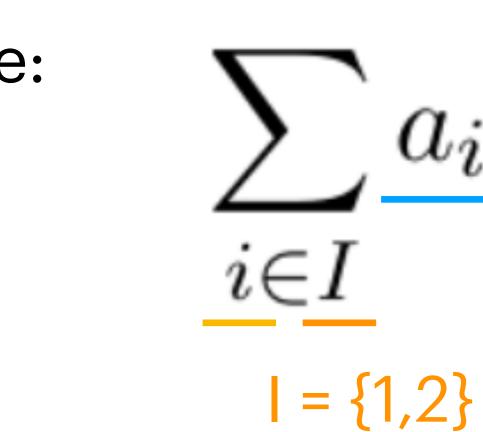
A = 3

a 1	a 2	a 3	a 4	a 5	a 6	a 7
1	2	0	1	0	0	0





sum of the elements ai indexes i from Index-set I



example:

elements a_i according to indexes i

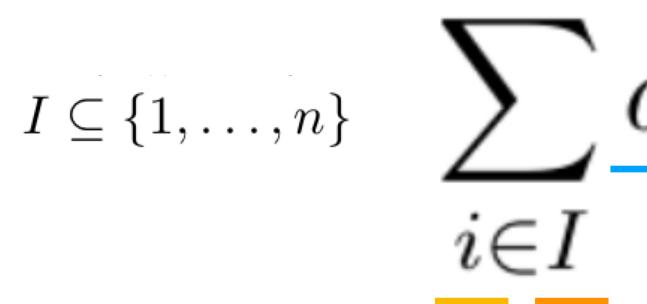
$$a_i = A$$

$$a_i = A$$

A = 3

a ₁	a ₂	a 3	a 4	a 5	a 6	a 7
1	2	0	1	0	0	0

 $a_1 + a_2 = 1 + 2 = 3 = A$



indexes i from Index-set I

$$S = \sum_{i \in I} a_i + \sum_{j \in J} a_j^2.$$

$$\sum_{i \in I} a_i = A \quad \text{and} \quad \sum_{i \in I} a_i^2 = B. \qquad \qquad \sum_{i \in I} a_i = \sum_{j \in J} a_j = \sum_{k \in K} a_k = \frac{A}{3}. \qquad \left(\sum_{x \in A} x\right) \mod m = a_i + a_i = a$$

elements a_i according to indexes i

$$a_i = A$$

sum of the elements ai

r .

Practice

Theory Task T3.

Let $A = [a_1, a_2, \ldots, a_n]$ be an array of non-negative integers. Given A and a non-negative integers S > 0, we want to determine whether S can be written as a (non-repeating) sum of elements of A, where we are allowed to take the square of elements. Formally, we want to determine if there exist $I, J \subseteq \{1, 2, \dots, n\}$ with $I \cap J = \emptyset, I \cup J = \{1, 2, \dots, n\}$ such that:

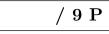
$$S = \sum_{i \in I} a_i + \sum_{j \in J} a_j^2.$$

Provide a *dynamic programming* algorithm that outputs **True** if this is possible, and **False** otherwise. For example,

- The inputs A = [2, 4, 4], S = 34 should result in **True**, since $34 = 2 + 4^2 + 4^2$.
- The inputs A = [2, 4, 4], S = 35 should result in False.
- The inputs A = [2, 4, 3, 22], S = 21 should result in False

In order to obtain full points, your algorithm should run in time $O(n^2 \cdot S)$. Address the following aspects of your solution:

- 1) Definition of the DP table: What are the dimensions of each entry?
- 2) Computation of an entry: How can an entry be con Specify the base cases, i.e., the entries that do not c
- 3) Calculation order: In which order can entries be c entry have been determined in previous steps?
- 4) *Extracting the solution*: How can the final solution b
- 5) *Running time*: What is the running time of your algo of n and S, and justify your answer.



Theory Task T3.

You are given an array of n natural numbers $a_1, \ldots, a_n \in \mathbb{N}$, and two natural numbers $A, B \in \mathbb{N}$. You want to determine whether there is a subset $I \subseteq \{1, \ldots, n\}$ satisfying

$$\sum_{i \in I} a_i =$$

For example,

- and the sum-of-squares $2^2 + 1^2 + 5^2 = 30$.
- The answer for the input $(a_i)_{i \le n} = [2, 4, 8, 1]$, A = 6 and B = 15 is no.

in your solution:

meaning of each entry?

/ 8 P

Theory Task T3.

An array of non-negative integers $A = [a_1, \ldots, a_n]$ is called summy if and only if, for all $i \in$ $\{2,\ldots,n\}$, there exists a (possibly empty) set $I \subseteq \{1,\ldots,i-1\}$ such that $a_i = \sum_{i \in I} a_i$. In other terms, every integer in the array except the first one must be the sum of (distinct) integers that precede it in the array.

For example,

- The array [2, 2, 4, 6, 0, 12] is summy, because 2 = 2, 4 = 2 + 2, 6 = 2 + 4, 12 = 2 + 4 + 6.
- The array [2, 2, 4, 6, 0, 13] is not summy, since 13 can not be written as a sum of integers from $\{2, 2, 4, 6, 0\}.$

Provide a dynamic programming algorithm that, given an array A of length n, returns True if the array is summy, and False otherwise. In order to obtain full points, your algorithm should have an $O(n \cdot \max A)$ runtime (where max A means the maximum value of entries in A). Address the following aspects in your solution:

- 1) Definition of the DP table: What are the dimensions of the table $DP[\ldots]$? What is the meaning of each entry
- 2) Computation of an entry: How can an entry be computed from the values of other entries ? Specify the base cases, i.e., the entries that do not depend on others.
- 3) Calculation order: In which order can entries be computed so that values needed for each entry have been determined in previous steps?
- 4) Extracting the solution: How can the final solution be extracted once the table has been filled
- 5) Running time: What is the running time of your algorithm ? Provide it in Θ -notation in terms of n and max A, and justify your answer.

$$A \quad \text{and} \quad \sum_{i \in I} a_i^2 = B.$$

our algoi

• The answer for the input $(a_i)_{i \le n} = [2, 4, 8, 1, 4, 5, 3]$, A = 8 and B = 30 is yes because the set of indices $I = \{1, 4, 6\}$, which corresponds to $(a_i)_{i < I} = [2, 1, 5]$, yields the sum 2 + 1 + 5 = 8

Provide a dynamic programming algorithm that determines whether such a subset I exists. In order to get full points, your algorithm should have an $O(n \cdot A \cdot B)$ runtime. Address the following aspects

1) Definition of the DP table: What are the dimensions of the table $DP[\ldots]$? What is the

	meaning in each entry
be com lo not de	Theory Task T3.
es be co	Let m, r be two integers satisfying $m \ge 2$ and $0 \le r < m$. We say that a finite set $A \subset \mathbb{N}$ of natura numbers is (m, r) -aligned if
s ?	$\left(\sum_{x\in A} x\right) \mod m = r$.
lution be	$\left(\begin{array}{c} \sum_{x \in A} \end{array} \right)$

Note that for $A = \emptyset$, we adopt the convention that $\sum x = 0$. Hence, the empty set is (m, 0)-aligned for every m > 0.

Given three integers m, r, n such that $0 \le r \le m \le n$ and $m \ge 2$, we would like to determine the number of subsets of $\{1, 2, ..., n\}$ which are (m, r)-aligned.

For example.

• If r = 1, m = 2 and n = 3, the subsets of $\{1, 2, 3\}$ that are $\{3, 1\}$ -aligned are $\{1\}, \{3\}, \{1, 2\}$ and $\{2,3\}$. Hence, the answer is 4.

Provide a dynamic programming algorithm that solves the problem. In order to get full points, your algorithm should have an $O(n \cdot m)$ runtime. Address the following aspects in your solution:

- 1) Definition of the DP table: What are the dimensions of the table $DP[\ldots]$? What is the meaning of each entry?
- 2) Computation of an entry: How can an entry be computed from the values of other entries? Specify the base cases, i.e., the entries that do not depend on others.
- 3) Calculation order: In which order can entries be computed so that values needed for each entry have been determined in previous steps?
- 4) Extracting the solution: How can the final solution be extracted once the table has been filled
- 5) Running time: What is the running time of your algorithm ? Provide it in Θ -notation in terms of n, m and r, and justify your answer.

heory Task T3.

ou are given an array of n natural numbers $a_1, \ldots, a_n \in \mathbb{N}$ summing to $A := \sum_{i=1}^n a_i$, which is a ultiple of 3. You want to determine whether it is possible to partition $\{1, \ldots, n\}$ into three disjoint

$$\sum_{i \in I} a_i = \sum_{j \in J} a_j = \sum_{k \in K} a_k = \frac{A}{3}.$$

ote that I, J, K form a partition of $\{1, \ldots, n\}$ if and only if $I \cap J = I \cap K = J \cap K = \emptyset$ and $\cup J \cup K = \{1, \dots, n\}.$

I ubsets I, J, K such that the corresponding elements of the array yield the same sum, i.e.

or example, the answer for the input [2, 4, 8, 1, 4, 5, 3] is yes, because there is the partition $\{3, 4\}$. 2, 6, $\{1, 5, 7\}$ (corresponding to the subarrays [8, 1], [4, 5], [2, 4, 3], which are all summing to 9). In the other hand, the answer for the input [3, 2, 5, 2] is no.

rovide a *dynamic programming* algorithm that determines whether such a partition exists. Your lgorithm should have an $\mathcal{O}(nA^2)$ runtime to get full points. Address the following aspects in your olution:

1) Definition of the DP table: What are the dimensions of the table $DP[\ldots]$? What is the meaning of each entry?

> n an entry be computed from the values of other entries? ries that do not depend on others.

> can entries be computed so that values needed for each vious steps?

> ne final solution be extracted once the table has been filled?

g time of your algorithm? Provide it in Θ -notation in terms er.

Last Session Organization

- Last session on monday 16 Dec
 - Exam Preparation Session
 - Exam tipps, lernphase tipps, mock exam
 - Recap topics
 - The rest will be covered during mock exam

Semester-end celebration !!!

Questions Feedbacks, Recommendations

