
A&D

Nil Ozer

Exercise Session 13

A&D Overview

Outline

• Shortest Paths - all to all

• DP Recap

• Exam preparation session organization

Shortest Paths

Recap
Shortest Paths (one - to - all)

G (directed/undirected) Algorithm Runtime

unweighted , all edges with the
same positive weight BFS usage O (|V| + |E|)

weighted , nonnegative edge
weights
c(e) ≥ 0

Dijsktra O ((|V| + |E|) * log n)

weighted, positive and (possibly)
negative edge weights

c(e) ∈ ℝ
Belmann-Ford O (|V| * |E|)

G has no cycles topological sorting + DP O (|V| + |E|)

Shortest Paths
All-to-all

G (directed/undirected) Algorithm Runtime

unweighted , all edges with the same
positive weight n x BFS O (|V| * (|V| + |E|))

weighted , nonnegative edge weights
c(e) ≥ 0 n x Dijsktra O (|V| * (|V| + |E|) * log(|V|))

weighted, positive and (possibly)
negative edge weights

c(e) ∈ ℝ

n x Belmann-Ford O (|V| * |V| * |E|)

Floyd - Warshall O(|V|3)

weighted, positive and (possibly)
negative edge weights

c(e) ∈ ℝ , no negative cycles
Johnson O (|V| * (|V| + |E|) * log n)

O(|V|*|E| + |V|2 log(|V|))

O(|V|*|E| + |V|2 log(|V|))

with Fibonacci-Heap

with Fibonacci-Heap

All-to-all Shortest Paths
Floyd-Warshall

Definition of the DP table :

DP[i][u][v] = “The length of the shortest u-v walk that only uses the intermediate vertices from {1…i}“

Idea : Two things can happen about a vertex i, considering a walk from vertex u to v
• i does not get used in walk u-v

• i gets used in walk u-v

intermediate vertices :

All-to-all Shortest Paths
Floyd-Warshall

no need to walk, we’re already there

just walk that edge, you don’t use any intermediate vertices

you can’t reach v without using intermediate vertices

don’t use vertex i use vertex i

All-to-all Shortest Paths
Floyd-Warshall

shortest walk from u to v using {1…i-1} shortest walk from u to i using {1…i-1} + shortest
walk from i to v using {1…i-1}

DP [i-1][u][v] DP [i-1][u][i] + DP[i-1][i][v]

All-to-all Shortest Paths
Floyd-Warshall

shortest walk from u to v using {1…i-1} shortest walk from u to i using {1…i-1} + shortest
walk from i to v using {1…i-1}

DP [i-1][u][v] DP [i-1][u][i] + DP[i-1][i][v]

Runtime: O(n3)

Solution at: DP[n][][]
“using all vertices”

All-to-all Shortest Paths
Floyd-Warshall , Negative Closed Walk Detection

∃ a negative closed walk ∃ v with DP[n][v][v] < 0⟺

DP[n][v][v] : The shortest walk from v to v using {1…n}

All-to-all Shortest Paths
Johnson

Problem is the negative edges ! (we can’t use dijkstra)

We know Dijkstra, how can we make all edge weights ≥ 0 ?

• Make all edge weights ≥ 0

• n x Dijkstra

Idea :

DOES NOT WORK WITH NEGATIVE CYCLES !

All-to-all Shortest Paths
Johnson - Making all edge weights ≥ 0

0 1

2

-2 1

0

All-to-all Shortest Paths
Johnson - Making all edge weights ≥ 0

0 1

2

-2 1

0

c(0,2) = -2 c(2,1) = 1 c(0,1) = 0

All-to-all Shortest Paths
Johnson - Making all edge weights ≥ 0

0 1

2

-2 1

0

All-to-all Shortest Paths
Johnson - Making all edge weights ≥ 0

• Add a new vertex z , and connect it to
every vertex in the original G with and
edge with cost 0

0 1

2

-2 1

0

All-to-all Shortest Paths
Johnson - Making all edge weights ≥ 0

• Add a new vertex z , and connect it to
every vertex in the original G with and
edge with cost 0

0 1

2

-2 1

0

z

0 0
0

All-to-all Shortest Paths
Johnson - Making all edge weights ≥ 0

• Add a new vertex z , and connect it to
every vertex in the original G with and
edge with cost 0

0 1

2

-2 1

0

z

0 0
0

• Find h(u) for every u
h(u) := length of the shortest path from z to u

with Bellman-Ford x1 from z

All-to-all Shortest Paths
Johnson - Making all edge weights ≥ 0

• Add a new vertex z , and connect it to
every vertex in the original G with and
edge with cost 0

0 1

2

-2 1

0

z

0 0
0

• Find h(u) for every u
h(u) := length of the shortest path from z to u

with Bellman-Ford x1 from z

All-to-all Shortest Paths
Johnson - Making all edge weights ≥ 0

• Add a new vertex z , and connect it to
every vertex in the original G with and
edge with cost 0

0 1

2

-2 1

0

z

0 0
0

• Find h(u) for every u
h(u) := length of the shortest path from z to u

with Bellman-Ford x1 from z
h(0) = 0

h(2) = -2

h(1) = -1

All-to-all Shortest Paths
Johnson - Making all edge weights ≥ 0

• Add a new vertex z , and connect it to
every vertex in the original G with and
edge with cost 0

0 1

2

-2 1

0

z

0 0
0

• Find h(u) for every u
h(u) := length of the shortest path from z to u

with Bellman-Ford x1 from z
h(0) = 0

h(2) = -2

h(1) = -1

• Calculate c’(u,v) for every edge
c’(u,v) := c(u,v) + h(u) - h(v)

All-to-all Shortest Paths
Johnson - Making all edge weights ≥ 0

• Add a new vertex z , and connect it to
every vertex in the original G with and
edge with cost 0

0 1

2

-2 1

0

z

0 0
0• Find h(u) for every u

h(u) := length of the shortest path from z to u

with Bellman-Ford x1 from z

h(0) = 0

h(2) = -2

h(1) = -1

• Calculate c’(u,v) for every edge
c’(u,v) := c(u,v) + h(u) - h(v)

c(0,2) = -2 c(2,1) = 1 c(0,1) = 0

c’(0,1) = c(0,1) + h(0) - h(1) = 0 + 0 - (-1) = 1

c’(0,2) = c(0,2) + h(0) - h(2) = -2 + 0 - (-2) = 0

c’(2,1) = c(2,1) + h(2) - h(1) = 1 + (-2) - (-1) = 0

All-to-all Shortest Paths
Johnson - Making all edge weights ≥ 0

• Add a new vertex z , and connect it to
every vertex in the original G with and
edge with cost 0

0 1

2

0 0

1

z

0 0
0• Find h(u) for every u

h(u) := length of the shortest path from z to u

with Bellman-Ford x1 from z

h(0) = 0

h(2) = -2

h(1) = -1

• Calculate c’(u,v) for every edge
c’(u,v) := c(u,v) + h(u) - h(v)

c(0,2) = -2 c(2,1) = 1 c(0,1) = 0

c’(0,1) = c(0,1) + h(0) - h(1) = 0 + 0 - (-1) = 1

c’(0,2) = c(0,2) + h(0) - h(2) = -2 + 0 - (-2) = 0

c’(2,1) = c(2,1) + h(2) - h(1) = 1 + (-2) - (-1) = 0

All-to-all Shortest Paths
Johnson - Making all edge weights ≥ 0

• Add a new vertex z , and connect it to
every vertex in the original G with and
edge with cost 0

0 1

2

0 0

1

• Find h(u) for every u
h(u) := length of the shortest path from z to u

with Bellman-Ford x1 from z

• Calculate c’(u,v) for every edge
c’(u,v) := c(u,v) + h(u) - h(v)

All-to-all Shortest Paths
Johnson

Problem is the negative edges ! (we can’t use dijkstra)

• Make all edge weights ≥ 0

• n x Dijkstra

Idea :

DOES NOT WORK WITH NEGATIVE CYCLES !

Shortest Paths
Overview

G (directed/undirected) Algorithm Runtime

unweighted , all edges with the
same positive weight BFS usage O (|V| + |E|)

weighted , nonnegative edge
weights
c(e) ≥ 0

Dijsktra O ((|V| + |E|) * log n)

weighted, positive and (possibly)
negative edge weights

c(e) ∈ ℝ
Belmann-Ford* O (|V| * |E|)

G has no cycles topological sorting +
DP O (|V| + |E|)

G (directed/undirected) Algorithm Runtime

unweighted , all edges with the same
positive weight n x BFS O (|V| * (|V| + |E|))

weighted , nonnegative edge weights
c(e) ≥ 0 n x Dijsktra O (|V| * (|V| + |E|) * log(|V|))

weighted, positive and (possibly)
negative edge weights

c(e) ∈ ℝ

n x Belmann-Ford O (|V| * |V| * |E|)

Floyd - Warshall* O(|V|3)

weighted, positive and (possibly)
negative edge weights

c(e) ∈ ℝ , no negative cycles
Johnson O (|V| * (|V| + |E|) * log n)

one-to-all all-to-all

*negative closed walk detection

Shortest Paths
Exam Tipps
• Know every detail of the “overview”

• Graph Modelling

• Model the problem correctly, define G,V,E,w

• Know which algorithm to apply for that particular graph problem

• BFS,DFS

• Shortest Paths

• MST

• Practice, practice, practice !!!

Recap

DP
Recap

DP
Recap

DP
∑

a1 a2 a3 a4 a5 a6 a7

1 2 0 1 0 0 0

DP
∑

elements ai according to indexes i

sum of the elements ai
indexes i from Index-set I

a1 a2 a3 a4 a5 a6 a7

1 2 0 1 0 0 0

DP
∑

a1 a2 a3 a4 a5 a6 a7

1 2 0 1 0 0 0

elements ai according to indexes i

sum of the elements ai
indexes i from Index-set I

I = {1,2}

A = 3

example:

DP
∑ elements ai according to indexes i

sum of the elements ai
indexes i from Index-set I

I = {1,2}

A = 3
a1 + a2 = 1 + 2 = 3 = A

a1 a2 a3 a4 a5 a6 a7

1 2 0 1 0 0 0

example:

DP
∑

elements ai according to indexes i

sum of the elements ai
indexes i from Index-set I

DP
Practice

• Last session on monday 16 Dec

• Exam Preparation Session

• Exam tipps, lernphase tipps, mock exam

• Recap topics

• The rest will be covered during mock exam

• Semester-end celebration !!!

Last Session
Organization

Questions

Nil Ozer

Feedbacks , Recommendations

