A&D Exam Preparation

Quiz

Outline

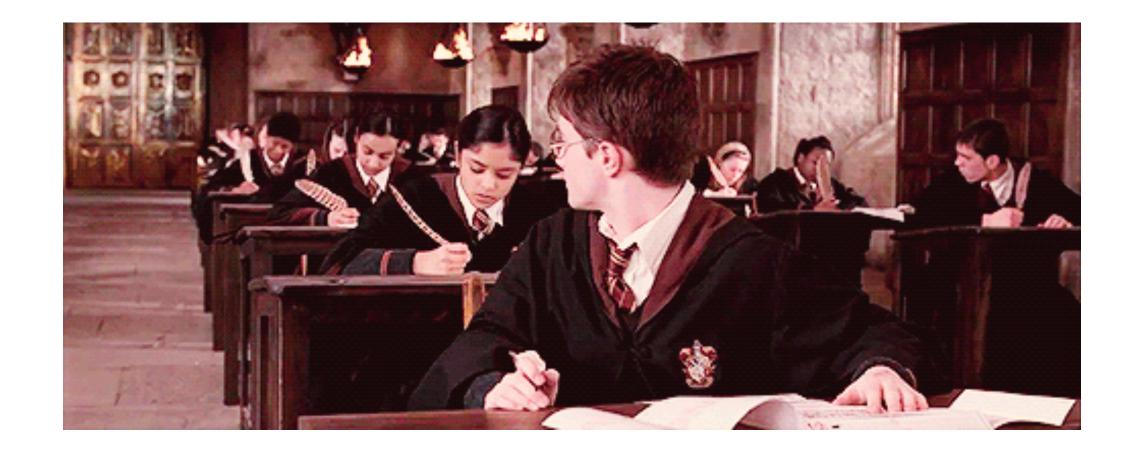
Quiz

- Lernphase
- Exam Preparation for A&D
 - Website Explanation

Mock Exam

- Some announcements
- Semester-end Celebration (pizza)

Lernphase My Basisblock I Grades

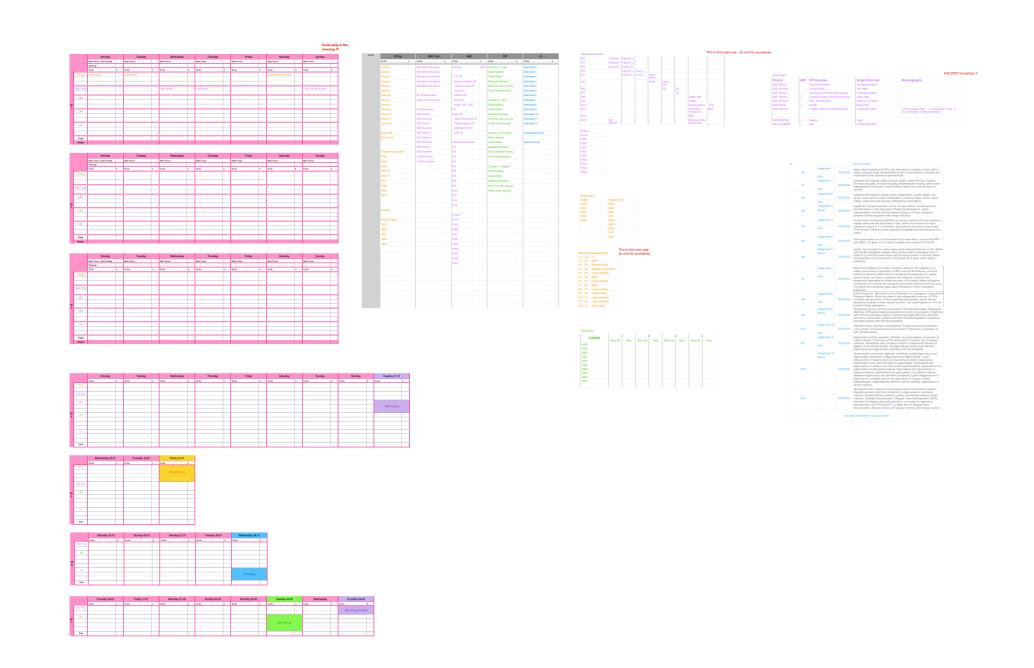

Basisprüfungsblock 1			5.44	
401-0131-00 S	Lineare Algebra	W24	5	1
252-0025-01 S	Diskrete Mathematik	W24	5.25	1
252-0027-00 S	Einführung in die Programmierung	W24	5.5	1
252-0026-00 S	Algorithmen und Datenstrukturen	W24	6	1

ETH Exams

• Exhausting! Could be fun:)

- What is "enough"?
 - How does scale work?

Everybody is in the same position as you



Planning

- "Waste" one day on planning!
 - You are making promises to yourself!

- %50 Coding, %50 Theory
 - For now, for the future!
- Interleave the subjects

- My planning looked like ...
 - Lernplan template for you!
 - Add/remove necessary

Be aware of your time left at all stages!

Lernphase Tipps for LA

- Prepare your own CS
 - Don't waste to much time
 - If so, take over and edit an existing cheat sheet
- Go through the semester exercises

- They take the learning goals, and turn them into questions
- Solve relevant exams

	Assignment		hasia vantar anarationa (in Daly add two yeaters, multiply a yeater with				
WO	7 toolgrilloni	ÜS NOTES	basic vector operations (in R ^m): add two vectors, multiply a vector with a scalar, compute linear combinations of two or more vectors; visualize and understand these apparations are provided by				
	Quiz		understand these operations geometrically				
W1	Assignment 1	ÜS NOTES	compute with vectors: scalar product, length, cosine formula, Cauchy-Schwarz inequality, triangle inequality, perpendicular vectors; define linea				
	Quiz	33110120	independence of vectors in three different ways; work with the span of vectors				
	Assignment 2		compute with matrices: matrix-vector multiplication, column space, row				
W2	Quiz	ÜS NOTES	space, rank; perform matrix multiplication, including matrix- vector, vector- matrix, scalar and outer product, distributivity, associativity				
	Assignment 3		avalain the CD decomposition, linear transformations, visualining linear				
	Bonus	_	explain the CR decomposition; linear transformations, visualizing linear transformations in 2d, properties of linear transformations, matrix				
W3	Bonus	ÜS NOTES	representation of linear transformations; systems of linear equations, systems of linear equations with unique solutions				
	Assignment 4		do elimination and back substitution on square systems of linear equatio				
			explain when and why this works or fails; define the inverse of a matrix,				
W4	Quiz	ÜS NOTES	compute inverses of 2 × 2 matrices, characterize when the inverse exists (The Inverse Theorem), invert a product of matrices and the transpose of matrix;				
	Assignment 5						
W5		ÜS NOTES	derive and explain the LU factorization from elimination; compute the REF and RREF of a given m x n matrix A, explain why it equals R in A=CR;				
	Quiz		and the second of succession and su				
	Assignment 6		explain the concept of a vector space; give examples that are not R ^m ; def and identify subspaces; explain when vectors span a subspace / form a				
W6	Bonus	ÜS NOTES	basis of it; prove that every basis has the same number of vectors; define the dimension of a vector space; find a basis for a given vector space / subspace;				
	Assignment 7		define the nullspace of a matrix; compute a basis for the nullspace of a				
			matrix; solve Ax=b by elimination to REF, read off all solutions, count the				
W7	Quiz	ÜS NOTES	number of solutions; define the four fundamental subspaces of a matrix: column space, row space, nullspace, left nullspace; compute their dimensions, depending on shape and rank of the matrix; define orthogonal complement and orthogonal subspaces; prove that nullspace and row spa				
	Assissment 0		of a matrix are orthogonal; argue about dimensions of two orthogonal subspaces; Define Projection, Derive formula for Projection on a subspace, Compute				
W8	Assignment 8 Quiz	ÜS NOTES	Projection, Derive formula for Projection of a subspace, Compute Projection Matrix. Show that when A has independent columns, A^TA is invertible and symmetric. Define Least Squares solution, derive Normal equations, compute a least squares solution. Use Least Squares to fit a line				
	Quiz		to points (linear regression).				
	Assignment 9		Orthogonal vectors, Orthonormal vectors, Orthonormal basies. Orthogonal				
	Bonus		Matrices. Orthogonal matrices preserve norm and inner-product. Projecti				
W9	50.00	ÜS NOTES	with orthonormal bases. Build an orthonormal basis with Gram-Schmidt (and show correctness of Gram-Schmidt). QR decomposition. Projection and least squares with QR decomposition				
W10	Assignment 10	ÜS NOTES	Pseudo-inverse, definition and properties. Pseudo-inverse and minimum norm solution. Pseudo-inverse and projection. Polyhedron, projections of				
	Quiz		sets, Farkas lemma.				
	Assignment 11		Determinant and its properties, definition via permutations, connection to matrix inverse, co-factors and the determinant, Cramer's rule. Complex				
W11	Quiz	ÜS NOTES	numbers, calculations with complex numbers. Fundamental theorem of algebra, roots of polynomials. Complex-valued vectors and matrices. Eigenvalues and eigenvectors, definition and 2x2 examples.				
	Assignment 12		Characteristic polynomial, algebraic multiplicity, finding eigenvalues and				
	Bonus		eigenvectors, properties of eigenvalues and eigenvectors. Linear				
	Dollus		independence of eigenvectors corresponding to distinct eigenvalues. Determinant, trace, and connection to eigenvalues. Eigenvalues and				
W12		ÜS NOTES	eigenvectors of rotations and other linear transformations. Eigenvalues ar eigenvectors of orthogonal matrices. Eigenvalues and eigenvectors of diagonal matrices. Eigenvalues and eigenvectors of projection matrices. Repeated eigenvalues and geometric multiplicity. Linear independence of eigenvectors, complete sets of real eigenvectors. Change of basis, diagonalization, diagonalizable matrices. Similar matrices, eigenvalues of similar matrices.				
			Spectral theorem: eigenvalues and eigenvectors of symmetric matrices. Rayleigh quotients and their connection to eigenvalues of symmetric				
W13		ÜS NOTES	matrices. Positive definite matrices, positive semidefinite matrices, Gram matrices. Cholesky decomposition. Singular value decomposition (SVD), derivation of singular value decomposition, connection to eigenvalue decomposition of A^TA and AA^T, compact form of singular value				

Tipps for DM

- Take over and edit an existing cheat sheet
- Learn chapter by chapter
 - My advice: Logic, Set, Number, Algebra
 - Also solve like this in the exam!!

For each chapter do these ->

- Then resolve the exams
 - Have complete exam trials

To-Do	h
Chapter 6 - Logic	
Skript reading	
Cheat Sheet	
Related Exercises	
Short Qs exam solving	
Proofs exam solving	
Chapter 3 - Set T.	
Skript reading	
Cheat Sheet	
Related Exercises	
Short Qs exam solving	
Proofs exam solving	

Chapter 4 - Number T.
Skript reading
Cheat Sheet
Related Exercises
Short Qs exam solving
Proofs exam solving
Chapter 5 - Algebra
Skript reading
Cheat Sheet
Related Exercises
Short Qs exam solving
Proofs exam solving

Tipps for EProg

- If you don't have the idea immediately yet, don't worry!
 - Timed bonus, don't worry !!

- Start by learning the question
 - Read the question, look at the solutions, understand it!
- Then code it yourself without looking
- Then try it by yourself on another day!

• Don't underestimate the written exams!! Tricky

Written	Programming
HS19	HS19
HS20	FS20
HS21	HS20
HS22	FS21
HS23	HS21 a
	HS21 b
	FS22
	HS22
	FS23

Semester Exercises Written

Obung Aufgabe Topic

U1 A4 EBNF

U2 A4 Postconditions

U3 A6 Weakest Precondition

U4 A4 Loop Invariante

U5 A4 EBNF

U6 A4 Loop Invariante

U7 A1 EBNF

U8 A1 Loop Invariante

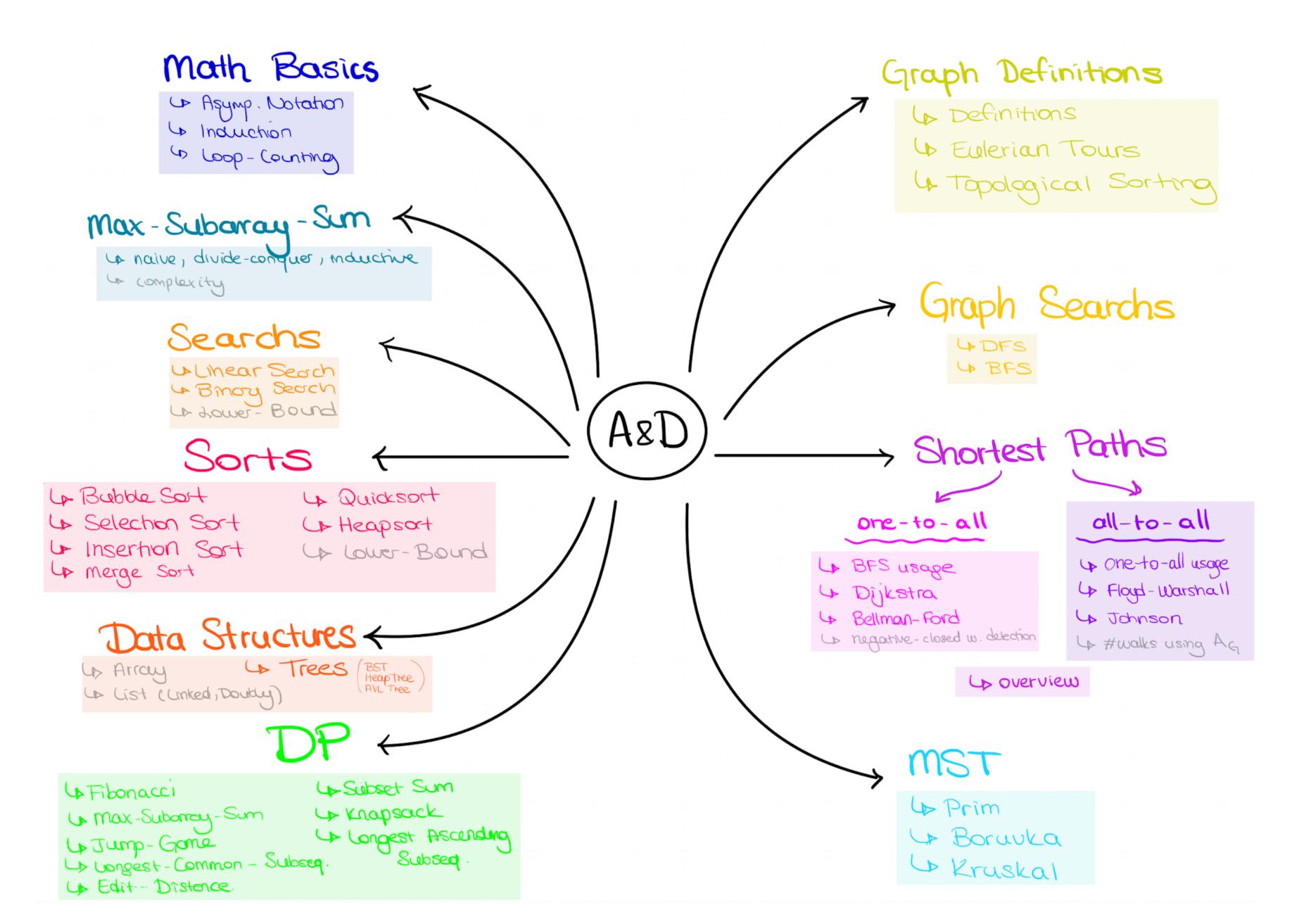
U9 A5 Klassenratsel

U10 A1 Loop Invariante

U11 A5 Loop Invariante

U12 A1 Hoare Triple

A&D Exam



've got you!

A&D Overview

Tipps for A&D

Semester Exercises:

- As I promised, you're very well prepared already
- However, you need to practice! There's a lot to do!

This is from last year, do one for yourselves

W0	Induction	Asymp. g.						
W1	Induction	Asymp. g.						
W2	Induction	Asymp. g.						
W3		Asymp. g.	Loop c.					
W4		Asymp. g.	Loop c.	Sorts search				
W5				Sorts	Heap, AVL			
W6					AVL	Dp		
W7						Dp		
W8							Graph defs	
W9							Graph	
W10							Graph,Dijkstra	DFS,
W11							Shortest P. Storied Qs	BFS,
W12							MST	
W13	INV PROOF						Shortest Paths, Storied Qs	

Exams:	
HS19	
FS20	
HS20	
FS21	
HS21	
FS22	
HS22	
FS23	
HS23	
FS24	

Add 2023 Yourselves!! Code Expert: A22 DP Exercise Notes (graph) Exams Graph Exercise 2022 Winter Array Compression Tree Augmentation 2022 Summer Two Trees Left and Right 2021 Winter 1 Shortest Uncommon Subsequence Undirected Graph Longest Power-of-two Subsequence 2021 Winter 2 Graph Sets 2021 Summer Pair - Subsequence Players on a Graph 2020 Winter Shuffle Binary Tree 2020 Summer 1. Two_Induced_Path , 2. Exists_Euler_Cycle , 3 Longest Palindromic Subsequence Jndirected Graph Two_Colorable , 4. Max_Distance(v) HS19 WINTER Square HS19 SUMMER Kruskal Algorithm

Written Exam

- %60
- 2h
- VIS, Mock Exam

Programming Exam

- %40
- 3h
- CodeExpert

	T1 (16P)	T2 (17P)	T3 (16P)	T4 (11P)	Prog. (40P)	Σ (100P)
Score						
Corrected by						

Programming Exam

- One DP one Graph Exercise each year
- Old exams will be published at the end of the semester

Exams	DP Exercise	Graph Exercise
2022 Summer	Left and Right	Two Trees
2022 Winter	Array Compression	Tree Augmentation
2021 Summer	Pair - Subsequence	Players on a Graph
2021 Winter 1	Shortest Uncommon Subsequence	Undirected Graph
2021 Winter 2	Longest Power-of-two Subsequence	Graph Sets
2020 Summer	Longest Palindromic Subsequence	Undirected Graph
2020 Winter	Shuffle	Binary Tree

If there are any changes, you will see!

Programming Exam

Test Exam 2022 Summer Two Trees Left and Right

Left and Right

You are given an array A of n integers, indexed from 0 to n-1.

You play the following game. You start with a score of 0. At each step of the game, you can make one of the following moves:

- 1. If A contains at least two elements, you can remove the **leftmost** and the **rightmost** element of A and add to your score the absolute value of their difference. For example, if the leftmost and the rightmost elements had values x and y, you add |x-y| to your score.
- 2. You can remove the **leftmost** element of A with no change to your score.
- 3. You can remove the **rightmost** element of A with no change to your score.

Your task is to find the maximum score that you can obtain in the game. You need to implement your solution as a method getMaximumScore(n, A).

Hint: Use dynamic programming with D[i][j] representing the maximum score that you can obtain on $A[i], \ldots, A[j]$.

Grading (16 points):

• An $O(n^2)$ implementation gets 16 points and an $O(n^3)$ implementation gets 6 points.

Attention: You are NOT allowed to use additional imports, other than the imports already included in the code template.

Two Trees

You are given two rooted trees, A and B, with disjoint vertex sets. Tree A has vertices indexed by a_0 , ..., a_{n-1} , with the root at index a_0 , and tree B has vertices indexed by b_0 , ..., b_{n-1} , with the root at index b_0 . The edges in each tree are weighted by positive integers.

You want to add some new edges that connect leaves of A with leaves of B, thus creating a connected graph. Specifically, you can add an edge only if it goes between a leaf of A and a leaf of B. Any edge that you add has weight 0.

The distance between two vertices is defined as minimum total weight of a path that connects the two vertices.

Given these two trees, you have to implement the following methods. All the answers are guaranteed to fit on an "int" type.

- edgeCount(): Return the total number of edges that you can add between the two trees.
- 2. minDistRoots(): Return the minimum distance between the roots of the two trees that you can achieve by adding exactly one edge.
- cycle(): Return 1 if you can add exactly two edges such that the resulting graph has a simple cycle (no repeated vertices) that contains the two roots.

minDistCycle(): Return the minimum length of a simple cycle (no repeated vertices) that contains the two roots that you can achieve by adding exactly two edges. You can assume such a simple cycle exists.

Written Exam

Old Structure

• T1: Basics I

• T2 : Basics II

• T3 : DP

• T4 : Graph

New Structure

T1: Complexity and O-Notation

• T2 : Graphs

• T3 : Algorithm Design

• T4 : Proofs

Tasks are always the same, just grouped differently!

One Graph Modelling task in T3

Written Exam

- T1: Complexity and O-Notation
 - Asymp. Notation Quiz
 - Loop Counting
 - Sorting/Searching Algos Quiz
- T2 : Graphs
 - Graph Quiz
 - Binary Trees (BST, AVL, Heap)
 - BFS/DFS
 - MST
 - SPT

- T3 : Algortihm Design
 - DP
 - Graph Modelling
 - "Formal" graph algo
 - Additional one
- T4 : Proofs
 - Induction
 - Graph proofs

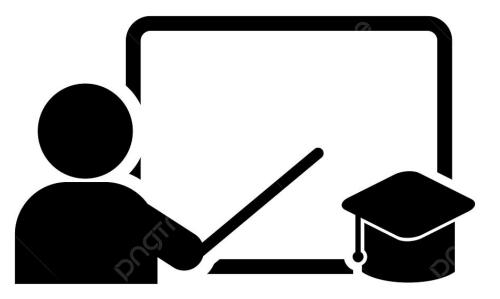
Exam Preparation Page Introduction

How to study for A&D

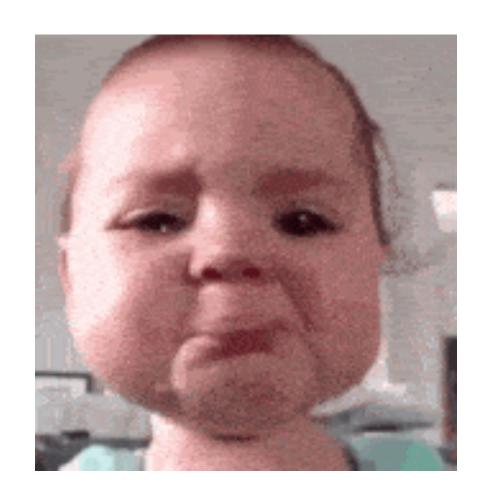
in the Lernphase

Use the exam prep page!!

- Recap topics use the summary/skript, Add/remove things, prepare your own summary!
- Exercise Sheets solve the relevant exercises not the weird ones
- Exam task examples document with all exam tasks we've solved in class , try it yourself!
- Exams Solve most of them! They are still highly relevant!
- You can always ask me :)
- Watch the youtube videos when I upload them
- Work on DP tasks, Work on Graph tasks (BFS,DFS,Dijkstra uploaded)
- Do exam trials



Mock Exam


Some announcements

Bye...

Nil Ozer